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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAT, MEMORANDUM 1259

THEORETICAL.INYESTIGATIONS ON THE EFFICIENCY AND THE
CONDITIONS FOR THE REALIZATION OF JET ENGINES®

By Maurice Roy

PRELIMINARY NOTES ON THE EFFICIENCY OF PROPULSION SYSTEMS

Pefinitions - Notations

1. The concept of efficiency of propulsion in a fluid.

The so-called "propulsion syétem" is a system that transforms part
of the available energy of a fuel into propulsive energy without
directly participating in the support of the propelled system.

Such a propulsion system may be regarded as distinct from the
propelled system, as is the case, for example, on the propeller-engine
unit forming an engine nacelle in a dirigible or similar systems called
power eggs (or engine nacelles) in certain types of airplanes where
these nacelles are distinct from the body and the wing unit.

In these conditions, it is seen that the useful effect of this
propulsion system is, as to force, the thrust which the said system can
transmit to the propelled system. This thrust T 1is reckoned in the
direction of the forward speed V and is taken positive in direction
of this speed. As to power, the useful effect of propulsion can be
represented by the work or energy (TV) per unit time of the thrust T,
moving at speed V. The product TV 1is the useful power of the
propulsion system.

This useful effect must be compared with the consumption of the
available energy supplied to the system in unit time, which is obviously
represented by the available energy of the mass of fuel consumed in
unit time.

*1'Recherches Théoriques sur le rendement et les conditions de
realisation des Systémes Motopropulseurs a Réaction." Publications
Scientifiques et Techniques du Ministére de 1'Air, Service des
Recherches de l'Aé}onautique, 1930.
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To find this available energy, it is necessary‘to resort to
thermodynamics.

Without going into details outside the scope of the subject, it
should be remembered that, in a system subjected to chemical transfor-
mation, such as the powder in a cannon or the fuel-alr mixture in a
heat engine, the available energy depends, in particular, on outside
conditions. On the other hand, it is known that, even when these condi-
tions are suitably specified, it is not possible, in general, to
accurately determine the variation in the available energy that corre-
sponds to the chemical reaction involved.

However, as a general rule, this available energy or, more
precisely, its diminution between initiasl state and final state of the
visualized reaction can be represented by its "calorific value" (also
called heat value) of the system subjected to the chemical reaction in
question.

This is, moreover, a convention universally employed in the study
of heat engines and which is ordinarily adopted without even noting the
theoretical objection which 1t raises.

In the present report, the energy available per unit mass of fuel
is represented by its low heat value (that is, without condensed water)
at constant pressure measured at standard atmospheric conditions
(pressure: T60 mm of mercury; temperature: 15° C.). As this value,
designated by L, is practically independent of the pressure and
temperature changes of the surrounding air, the convention thus acknowl-
edged will be valid whatever the altitude of operation.

Thus when m represents the mass of fuel consumed in unit time,
the input of this propulsion system in unit time is equal to mL.

The efficiency of the system is, theoretically, the ratio of the
useful effect to the input.

With the quantities T, V, m, and I being assumedly measured
in consistent units,l the over-all efficiency will be defined by

Mg = I%Lv_ (1)

1
M.K.S. units, where T 1is expressed in kg, V in m/sec., m in

units of mass (weight in kg divided by 9.81) and L in kg per unit of
mass.
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It should be noted that this over-all efficiency as defined is not
necessarily lower than or equal to unity, as it should be in order to
completely correspond to the logical notion of efficlency.

2. Definition of thermal efficiency.

. In the propulsion system, which is none other than a heat engine
whose useful energy is realized in the form of energy of propulsion, it
is necessary to distinguish between: (a) the active bodies, that is,
those which, at the end of a period of operation in the cycle, are in a
different physical or chemical state from their initial state; (D)
intermediary bodies, that is, those whose state is the same at the
beginning and at the end of a cycle. Among the latter category belong
the solid elements of the system, as well as the fluid, which work in
closed circuits (such as the cooling water or the lubricating oil, for
example). :

Among the active bodies belong the fuel, and generally, the air,
whether the latter functions in the system as.propellant or merely
‘serves to dilute the products of combustion.

‘At entry into the system, these actlive bodies are in a certain
initial state or state of admission (a). Both the air and the fuel
are assumed to be at ambient pressure p, and atmospheric tempera-
ture Ty. The fuel, in this state, moves with practically negligible
speed, but the alr may have an appreciable speed.

At the exit from the system, the active bodies find themselves in
a certain final state or state of evacuation (e). 1In this state, the
pressure is assumed to be uniform and always equal to the ambient
pressure pg. (Actually it can differ substantially when exhausting in
a low-pressure zone, but this has no appreciable effect on the systems
involved here.) On the other hand, in state (e) the temperature as
well as the velocity cannot be uniform, that is to say, identical for
all active bodies leaving the system.

The system transfers to the outside by radiation and conduction a

certain quantity of heat (mQR) in unit tim.e,2 Qr denoting the quantity
of heat in question referred to unit mass of fuel consumed. The
quantity of heat fQp may be decomposed in two parts: a part Qp
representing the heat given off by the active bodies to the intermediary

2In the present report all energy or heat quantities are expressed
by the same units, which eliminates the necessity for indicating the
mechanical equivalent of heat in the formulas. The unit of work, or
of heat, used here is, theoretically, the kilogram, :
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bodies with which they are related, and a part Qf Trepresenting the
supplementary heat transfered to the outside medium (ambient fluid) by
the intermediary bodies and which essentially corresponds to the work
of mechanical friction and to the passive resistance of the propulsion
system (that is, resistance stemming from the intermediary bodies).

The internal energy will be denoted by mU and the volume of the
active bodies consumed in unit time by mV.

If these active bodies went through the cycle in a fixed heat
engine where their introduction and evacuation proceeded in the same
physical and chemical state as in the propulsion system under considera-
tion and without appreciable kinetic energy, and if this cycle were
completed with the same transfer of heat (mgr) from active bodies to
adjacent bodies, the indicated energy which these active bodies supplied
in this engine per unit mass of consumed fuel would be

_C_i = (g+ P.v_)a - (H + P.Y,)e - QT (2)

This work or energy shall be called the indicated energy of the thermo-
dynamic cycle of the active bodies in the system in question, per unit
mass of fuel consumed. The corresponding effective energy Copp will

be the preceding term decreased by Cg, that is to say, minus the work
of friction and passive resistance of the system, also referred to unit
mass of fuel consumed. Hence, since Q. + Qr = QR,

Cepp = (U + pV)y - (U +pV)e - SR (3)

It is by this work, which depends only on the physical and chemical
state of admission (a) and evacuation (e) of the active bodies in the
propulsion system and on the total exchange of heat between the system
and the surrounding fluid, that the thermodynamic cycle of the active
bodies in the system is characterized in the system under consideration.

By the same procesé, the thermal efficiency of the system shall be
defined by the ratio

(@]

Rahs (%)

th = T

This is an actual efficiency. An indicated thermal efficiency could be
defined by the ratio

_ Ly
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.

and a mechanical efficiency of the system by the ratio

. CePr Mth
] Ty = Gy T (6)

These definitions, obviously conventional, have the great advantage of
being in keeping with those universally adapted in the study of ordinary
heat engines.

. Theoretically, only the thermal efficiency Th 'definéd by
equation (4) is being considered here. E

In addition, it may be recalled that the term C.pp defined by
equation (3) may be put in more detailed form

Cerp =L - 8c -8 -8R (7)

where L = (U + pV), » (U + pV)p 1is the low heat value of the fuel
(that is, of its unit mass), at the conditions Pg» To at the above-

mentioned state (f) corresponding to these conditions and to a complete
combustion, assuming zero condensation of water vapor.

Qe = (U +pV)er - (U + pV)e is the heat loss due to incomplete
combustion, the state (f') being that of the products of real combustion,

reduced to pgy, Ty, assuming zero condensation of water vapor.

Qe = (U+pV)e - (U+ pV)pr 1is the heat loss due to the exhaust,

that 1s, the sensible heat of the active bodles in the state of evacua-
tion (e) with respect to the ocutside medium.

Equation (3) put in the form (7) is simply the classical heat
balance of stationary heat engines in an atmosphere at (py, Tg).

3. Definition of the propeller efficiency.

The thermal efficiency 14} that characterizes the thermodynamic

utilization of the fuel in the propulsion system is defined by the same
process. It is, in short, the engine which thus has been characterized
in special fashion.

To characterize the propeller it is assigned an efficiency, 1.,
termed propeller efficiency, defined by the condition that its product
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by thermal efficiency 1y, represents the over-all efficiency Ng
defined by the relation (1):

Mg = Tthp (8)

By definition the efficiency of the propeller is then:

_
o = L (9)

., Application of these definitions to a classical case.

To demonstrate that the foregoing generalized definitions corre-
spond, as desired, to the current notions used for ordinary propulsion
systems, suppose that they are applied to an engine nacelle of an air-
plane or a dirigible equipped with an engine and a propeller.

In this case the power effectively transmitted to the propelled
system is (TV), T denoting the effective thrust, that is, that which
the nacelle transmits through its attachments to the propelled system
(this thrust is equal to the actual propeller thrust measured over the
hub, less the aerodynamic resistance of the nacelle when the propeller
rotates).

If 14y is the effective thermal efficiency3 of the engine and m
the fuel consumption in unit time, the effective horsepower transmitted
by the engine to the propeller is (m Tth L) and the propeller effi-

ciency 1, in the usual sense, is the ratio of the effective power TV
to this horsepower supplied by the engine

TV
mnthL

Mh =

It is readily seen that this ratioc is identical with the propeller
efficiency 7, defined by equation (9).

3In this term the kinetic energy of the air in the air intake of
the carburetor and that in the burnt gases at exhaust pipe exit are
ordinarily disregarded. These kinetic energies are, in fact, for
practical purposes negligible, but in the general study of propulsion
systems made here, exact allowance is necessary.
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PART I

FROPULSION SYSTEMS WITH DIRECT AXIAL REACTION
ROCKETS AND ROCKETS WITH THRUST AUGMENTATION
The types of systems considered can be divided into two categories
which will be studied in succession under the following headings:

A, Explosive rockets, fed by means of a fuel containing its own
combustion air.

B. Conventional-fuel rockets, that is, deriving its carburation air
from the outside atmoshpere.

Lastly, under C, the principal results obtained are summarized and
the rockets compared to the engine-propeller system.

A. EXPLOSIVE ROCKETS

Chapter I - True Explosive Rocket

5. Definition.

This type of rocket corresponds to the diagram of figure 1, It
comprises a shell of streamlined shape, truncated at the rear, along
the exhaust section Seg on which the cavity or core of the rocket opens.
This core carries a combustion chamber containing the stored explosive
and an expansion nozzle connecting the chamber with the discharge
orifice.

Ignition 1s by means of some kind of detonator or primer, actuated,
for example, electrically.

‘The gases exhaust toward the rear with a certain relative speed wg.
Assume a steady state, an axial and uniform translation of rocket
at speed V, end, lastly, uniform pressure and speed in the exhaust

section Se.

The rocket and the bodies contained in it are, on the outside,
subJected
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(a) To the resultant Re of the force of the surrounding fluid
on the shell, obviously along the axis and counted positive in the
direction opposite to V, that is, in the direction of the resistances

(b) To the outside pressure pe acting on the exhaust section Se

(c) Lastly, to the connecting force with the propelled system,
equal and opposite to the thrust T of the rocket.

6. Calculation of thrust and over-all efficiency.

The momentum theorem projected along the direction of speed V is
now applied to the rocket and to the bodies contained in it at instant t,
in absolute motion and during time interval dt.

With m as the mass of explosive consumed per unit time,

(-Rg + PeSe - T)dt = -mV at + m(V - w)dt

1

hence
T = peSe = Re + MWe (lO)

Consider first the term (peSe - Re). The term (-Re) is the
resultant of all superficial forces of the surrounding fluid projected
along speed V, that is, of the outside air on the outside shell of the
rocket.

These forces are decomposed, at each point, into a normal and into
a tangential force.

At low speed it may be admitted, on one hand, according to the
boundary layer concept, that the normal force is practically equal to
the local pressure of a perfect fluid of the same rate of flow provided
that the body is adequately streamlined and, on the other, that the
tangential force arises from the contact friction of the fluid layer
which adheres to the body. In these conditions, it is easily seen that
the resultant along V of the normal forces at the shell, augmented
by (peSe), represents the resultant along V of the nommal forces at
the shell, less the unit pressure pe at each point. In other words,
it is the geometric sum projected on V of the high and low pressures
(with respect to pe) acting on the outside surface of the shell.
Referring to pressure measurements on the surface of streamlined bodies
tested at fairly small Reynolds numbers, it is apparent that the
resultant in question is very small compared to the thrust T when the
latter has an appreciable value. The term (peSe - Re) is therefore
reduced when T 1is considerable at the resultant along V of the forces
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of friction of the-surrounding fluid on the shell. This resultant is
manifestly negative and 1ts value is, therefore, relatively low, when T
is sufficiently high. '

: . At high speed the viscosity of the air glves precedence to its
compressibility and the tangential forces are practically negligible.
But nothing is known then of the pressure distribution over the envelope
‘of the rocket and the question must be left to experiment. However, it
would seem possible to establish a certain analogy between the rocket
and an artillery shell, at least for head resistance, that is to say,
on the portion located forward of the section AB where the cylindrical
part of the body begins (fig. 2).

The difference between the rocket and the shell is indicated
especially by the flow of gas ejected by the former, which tends to
regulate the air flow so profoundly disturbed behind the base of the
shell.

Lack of knowledge on the aerodynamic resistance of the several
parts of a shell does not permit any conclusions to be drawn from this
comparison other than the probability of smaller magnitude of the
term (peSe - Re) corresponding to the rocket with respect to the
resistance of a projectile of suitable form.

Besides, the axial propulsion rockets considered can have no very
high speed and the remarks about the rockets with very high speed are
described in the second part of the present report where Jjet propellers,
fitted with rockets at the tips of the blades, are discussed.

The term (peSe - Re) which, according to the foregoing, is, in
general, supposed to be negative, that 1s to say, to represent an effec-
tive resistance to advance, can be put in the form

o .
& g ve (11)

PeSe - Be = ~Cre 5 Se

Cre Signifying the aerodynamic coefficient of this resistance referred

to the density pg of the surrounding air, to the exhaust section Se,
and the square of the speed V.

On the other hand, with pe denoting the density of the exhaust
gases the mass discharge of the rocket has the value

m = peSeWe - (12)
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The thrust T evaluated by formula . .(10) is, in consequence, put
in the form

|+

2\ A pe<wé

T = a.SeV 2 5; T) = Cre (13)

5P

This formula enables the order of magnitude of the two terms in
parenthesis to be known.

Supposing that the coefficient cpe 1s of thé order of magnitude
of the coefficients of frontal resistance of a suitably steamlined body
at forward speeds of the order of 100 to 1000 km/h. In these condi-
tions, cyre probably ranges between 0.05 and 0.12, dependlng on the
shape and speed.

As to the exhaust gases, for explosives such as smokeless powder,
their density is near that of the air (in reality, less than 5 percent)
at equal temperature. If the absolute exhaust temperature is two or
three times that of the surrounding medium, the ratio pe/pa is then

of the order of 1/3. But the ratio we/V, for V ranging between 100
and 1000 km/h or between 28 and 280 m/sec is at least equal to 3 and
may easily reach a value of 30 to 50, if the speed V is low enough.
Hence, the first parenthesized term of (13) is, at least, of the order
of 6, while the second term would be of the order of 0.05 to 0.12.

Therefore, it 1s almost certain that, for the applications in view,

the term in cye can be neglected without appreciable error and the
expression for the thrust T reduced to

2
PeSeWe™ = mwg (14)
This expression is adopted here, to simplify matters.

The propulsive efficiency defined by (9) then takes the simple form
N = v (15)

The over-all efficiency n of the rocket considered as system of
propulsion is by virtue of the qualifying equation (8),

2
_ Ve Ve
g =TV (16)
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The above expressions of T, 7mp, and 7g introduce the relative
speed of exhaust we, which is determined next.

_7 Calculation of the relative speed of the exhaust.

Con51der the system formed by the rocket and the bodies contained
in it (explosives and combustion gases) at instant t upon assuming a
steady state at the same time for the translation of the rocket, the
combustion of the powder, and the exhaust of the gases from the rocket.

This state is steady neither for the distribution of the bodies
in the system, since the space occupied by the explosive decreases pro-
gressively, nor for the mass of bodies contained in the rocket.

Let us apply the principle of the conservation of energy to the
system in question during time interval dt and with respect to the
axes fixed in the rocket and consequently, actuated by an absolutely
uniform forward speed. The energy of the outside forces is reduced
to (-peSeWé dt). The variation of the internal energy of the system
is

m dt(Ue - Up)

where U = internal energy per unit mass of active bodies (explosive),
Ue refers to the assumedly uniform state of exhaust gases and Up
refers to the state of the explosive before combustion, a state assumed
to be unaffected by the combustion in adjacent sections.

The chgnge in kinetic energy relative to the system is reduced
Ve
to m dt > -

The system necessarily transmits a certain amount of heat to the
outside through the envelope of the rocket, but, for simplification,
this exchange of heat can be disregarded; the rocket can be practically
likened to a rigorously adiabatic system.

In these conditions the principle of conservation of energy is

We2
-peSewe = ml}e - UO + '—2—

or with Ve denoting the specific volume of the exhaust gases

e - cued]
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and, by dividing by m

. |
T = (U P, - Uo - amn

The initial state of the explosive before combustion can be
likened to its state in the conditions pg, T, of the surrounding
medium. The explosive is then a solid whose unit mass possesses the
internal energy Uy and the volume Vg.

The product (PaYa) being entirely negligible with respect to
(peVe), the U, in equation (17) is replaced by (Ua + paVa), so that

= (U+ BV - (U + PV, (18)

The kinetic energy of the gases at exhaust from the adiabatic
rocket is thus found to be equal to that which previously was called
the effective energy of the thermodynamic cycle.

In consequence of which, according to the equation (4) which
defines the thermal efficiency mnyp, we can put

2

Utilizing the thus-obtained value of w,, equations (1L), (15),
and (16) can be written in the form

2
Ny = V\/———* (21)
P "thL
2Nth
g = T\ (z2)

8. Over-all efficiency.

Consider formula (22) in which, as will be recalled, the effect of
coefficient of aerodynamic resistance cpe of the rocket, which consti-
tutes an acceptable approximation as long as V 1is not too high, has
been neglected.
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The expression of the over-all efficiency thus establishéd indi-
cates that the latter is dependent only on:

Speed V-
Thermal efficiency 7y
The heat value L of the explosive

It further shows that 1 increases in proportion to the speed V
and. the square root of the thermal efficiency. It lastly shows that
subject to the reservation indicated above concerning the approximation
effected by disregarding the coefficient c¢..., the over-all efficiency
can increase indefinitely at the same time as V.

This seemingly paradoxial conclusion is Jjustified when noting that
the rocket consumes, during flight, a part of 1ts mass corresponding to
the explosive transformed in exhaust gas.

Thus, in order to produce the absolute energy of propulsion TV,
it consumes not only the fraction Mg of the available energy mL of

the consumed explosive, but also the absolute kinetic energy m s of

2

the mass m of the explosive at the moment of its utilization.
ve
If the effective power TV 1is referred to the sum m{L + 5

rather than to mlL, an energy efficlency 17, can be defined, whose
value would be

v - 2V/ngl

fle = ( VE)_ oI, + V2
m

L+-72—

of which the maximum, in function of V (that 1s, for n¢n and L
constant) occurs at V = V2L and has the value

Te = Vth

This ratio has then the same limit as /M¢} and remalns less than
unity when conceding that the thermal efficiency mn¢y 1tself cannot
exceed unity.

This remark points.out the impoftance of the admonition voiced at
the beginning of the report (cf. article 1) on the subject of
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conventional and not perfectly rational character of the definitions
adopted for the several efficiencies and conformable to more extensive

usage.

On examination of the wvalues attainable for the over-all effi-
ciency 7, of the rocket, evaluated by formula (22), it is found that
the heat value of explosives depends upon their nature:

For black powder, L. is of the order of 650 cal/kg (or in the
chosen units, 2,760,000 kgm per unit mass).

For powders such as smokeless powder, powder B, colloidal powder,
or gun-cotten, L. is of the order of 1050 to 1250 cal/kg.

For the calculations, a powder B with a heat value I equal
to 1200 cal/kg or 5,000,000 kgm/unit mass is considered.

The thermal efficiency 14 of the rocket depends upon the
pressure of combustion in the chamber, say, for example, 0.20, 0.40,
and 0.60.

In these conditions the over-all efficiency Mg of the rocket
reaches the values given in table I, at different speeds V.

TABLE T
OVER-ALL EFFICIENCY OF ROCKET

(Powder B; L = 5,000,000 kgm)

o ek = 0.20 0.40 0.60
(iihmﬁzig) ng = 0.011 0.016 0.019
_(§§8m£37§) 0.022 0.032 0.039
B
%g$6m£;7§) 0.0kk 0.06k4 0.078
%$gom£;7;) 0.055 0.080 0.098
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For black powder (L = 2,760,000), the figures of the table must
be multiplied by 1.30.

Hence, it is seen that, even with favorable thermal efficiency
(n¢n ranging between 0.40 and 0.60) and up to speeds of the order
of 700 km/h, the over-all efficlency of the rocket is less than 10 per-
cent (13.5 percent for black powder) while the engine-propeller system
used in airplanes reaches a thermal efficiency (engine) of from 25
to 30 percent and a propulsive efficiency (propeller) of 60 to 75 per-
cent, that is, an over-all efficiency ranging between 15 and 22.5 per-
cent, .

Thus the powder rocket is characterized, a priori; by mediocre or
insufficient over-all efficiency, vwhich can be lmproved only by raising
the thermal efficlency or by restricting the use of the rocket 'to the
range of very high speed (above 70O km/h).

9. Organic structure of the perfect rocket - thermal efficiency -
development of simple formulas for tEe perfectly adiabatic
rocket operating in a uniform state.

The combustion being assumed adiabatic and realized at constant
pressure p. starting from temperature Tg, the combustion temperature

TC
L = f caT (23)
T

C = the specific heat at constant pressure of the products of combustion,
assuming no water vapor being condensed.

" T. 1is defined by

The adiabatic expansion of gas from Pe to pg, assumedly

effected according to the reversible adiabatic (or isentropic) process,
leads to the final temperature Te such that

re = 1o(32) 7 e

y denoting the ratio of specific heat C/c of the prodﬁcts of
combustion.

ll'Incidem:za.lly‘, it seems timely to recall that the question of flow
of gases of powder in nozzles had occupied a number of French scientists
during the period from 1914 to 1918 in connection with projectiles called
rocket projectiles as well as with recoil cylinders for cannons (muzzle

brakes).
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On the -other hand, the effective energy of the thermodynamic cycle
is

Te |
Nth L =L]F CaT (25)
Te

In comparing (24) aend (25) and noting that T, and T, are
largely of the same order with respect to T, which is very great,
that is to say, that the mean value of C between Tg and T, 1is
comparable to its average value between Te and Tc, we can put

_Ic-Te
th Te - Tg

or, with allowance for (24) and putting X = ratio of expansion in the
nozzle-= Dp./Pe

Te 1
= 1 = . 26)
Tith Te - Ta. N y - 1 (
4

Thls relation shows that the thermsl efficiency of the perfect
adiabatic rocket (whose combustion temperature T. 1s according to (23)
independent of the pressure when the initial temperature T, is given)
depends only upon the ratio of expansion A in the nozzle of the rocket.

The speed of exhaust from the nozzle exit is given by (19). Next,
the thrust referred to unit surface of the discharge section of the

nozzle is calculated. This intensity of thrust t = gl is according
e
to (20)

t = 2pengy L

The exhaust density follows from the equation of state of the powder
gases

1
Pe(E; = a,) = RT¢

o being the covolume of the powder gases and R a constant.
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" Calculation readily yields the formula

2n4,,L
- (27)

t = L
Se RT. .

For values of A below 500 (that is, for p. < 500 kg/cm?

if py =1 kg/cn®), the covolume o can be disregarded in the
preceding relation which then is reduced, after simplifications, to

-1
t =2 Pe™ x77 1
~ " R(T; - Ta)

These formulas are applied to the case of a rocket charged with
powder B,

The characteristics of this explosive are according to the
information furnished by various authors

L = 5,000,000
R = 309
y = 1.25

T

< = 2,450° (on the premise of Ty = 273 + 15 = 288°)

The data of the thermal efficiency n, speed Wy, exhaust

temperature To, and, lastly, the ratio t/pe of the intensity of
thrust t +to the exhaust pressure for different expansion
ratios A = Pb/Pe are reproduced in table II.

TABLE II

A Tth Ve Te t/Pe

m/sec degrees

10 0.415 2,035 1,545 8.95
.50 .615 2,480 1,120 16.7
100 .680 | 2,605 975 23.3
200 .70 2,720 850 29.0
300 .TT0 2,770 .85 32.9
Loo .790 2,805 740 38'6
500 .805 2,835 105 38.0
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The data in the table are only approximate, especially for the low
values of A because the calculation was simplified by replacing the,
specific heat C by an average value .and assumed the same in (23)
and (25). This is evidently inaccurate when Te differs very much
from T,, that is, according to the figures in the preceding table,
at least as much as the difference between 100 and A.

But this approximation which plays no part in the calculation
of Te is sufficient to show that values of the order of 0.60 in
thermal efficiency can be reached only at a combustion pressure of
from 50 to 100 times the exhaust pressure.

The values of t/pe are interesting to the extent of showing
that this fictitious perfect adiabatic rocket makes it possible to
obtain a very substantial thrust with a relatively small exhaust.
section. Thus for a rocket with an internal pressure of 100 kg/cm2
exhausting into standard atmosphere (pe = 1 kg/cm?) a section of 43 cm?
(or a circular exhaust orifice of 7.4 cm in diameter) is sufficient to
secure a thrust of 1 ton.

However, this rocket is, by assumption, an ideal engine, the
realization of which raises certain difficulties and involves certain
efficiency losses which are to be examined next.

10. Study of real rocket - special difficulties - obtainable efficiency
(1) Existence and stability of state.- In the foregoing, the

existence of a so-called steady state of rocket operation had been
assumed. This state is now determined.

Supposé that s 1s the surface of combustion of the explosive.
According to the classical works of interior ballistics, the volume
in mass m; of combustion gases can be written in the form

m = ksp 0T | (29)

k denoting a characteristics coefficient of the explosive and Pc
the pressure in the combustion chamber.

The exponent 0.7 is a matter of dispute; certain authors give it
a higher value, rounded to unity. On the other hand, the known tests
refer especially to very high pressures.

The volume m; must be equal to that of the gases evacuated by
the nozzle and it is supposed that the latter is of the converging-
diverging type, as is necessary for the applications in view where pc
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is always twice as high as the external pressure. In the throat of the
nozzle, the flow is determined solely by pressure p, and is found to

be independent of the pressure at the outlet (pg < pc/2).

Disregarding the covolumer d of'the gases _of the explosive, which
is legitimate for the pressures p, <500 kg/cm2 in question, it is
readily calculated that the pressure in the throat is Po = 0.555 Pc

and the corresponding temperature Tg = 2,1750 for powder B (y = 1.25).
The volume in mass mp through the throat of section Sp 1is given
(in M.K.S. units) by the formula

| [ 72,
mp = PoSo¥o = PoSo\| =
o

m, = 0.000756 Sup. (30)

or

Equating (29) and (30) gives

0.7

kspe ' = 0.000756 Sup,. (31)

which determines the pressure p. of the state.

This state is stable as proved by the following argument. Plotting
the volume m; of combustion of the powder obtained by (29) and the
volume ms of the nozzle obtained by (30) against p. (fig. &), these
curves intersect at a point M.

This point M represents the state which necessarily exists and
which according to the shape of the curves is unique, so far as the
assumptions which had to be made in the establishing of formulas (29)
and (30) are verified when the pressure Pe changes from zero to its

value of the corresponding state in point M. The state is stable
because, when the pressure rises, the volume mp of the nozzle exceeds
that of the combustion of the powder and the pressure tends to decrease.

The inverse or reciprocal effect is produced when the pressure
decreases. The thus demonstrated stability of the state of functioning
is in good agreement with the statements made about the operation of
rockets commonly utilized in fireworks. However, this stability
supposes a law of the form (21) verified for the rate of combustion
of the powder, with an exponent of P, less than unity. Now, such an
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assumption is not admitted without dispute5 and there is a serious
reason for making some reservations on. the stability, in general, of -
the functioning of explosive rockets.

(2) Hypothesis on the initial state of the explosive in the rocket.-
The previously developed formulas suppose that the powder, prior to its
combustion, remains in the core of the rocket at the original tempera-
ture Tga. It 1s largely by reason of this assumption that the combus-
tion temperature T, is independent of the combustion pressure p.
as represented by (23). In fact, the rocket being heated by conductivity,
it is possible that the temperature of the still-unburnt powder
increases progressively. This fact gives rise to a risk of spontaneous
and accelerated ignition falsifying the normasl law of the rate of com-
bustion. So in this respect there might be some fear of certain risks
of inopportune explosion of the rocket or instability of its normal
state of coperation. Incidentally, there come to mind certailn unexpected
explosions of rockets in the course of automobile rocket tests and also
in rocket-equipped glider tests made in a foreign country (Germany).

(3) Losses through the walls and in the nozzle - practical
efficiency of the rocket.- The previously computed thermal efficiencies
refer to an assumedly adiabatic rocket. But the corresponding tempera-
ture 2,&500 for powder B is excessive and inadmissible for a continuous
and prolonged state of operation. Necessarily, it must tolerate a
certain loss through the walls in order to limit the temperature in the
combustion chamber to a value compatable with the resistance of the
latter, under the pressure to which it is assumed to be subjected.

By way of example, suppose that the absolute pressure and tempera-
ture in the gombustion chamber of the rocket with power B is limited
to 100 kg/cm and 1800°. The exhaust temperature Te drops then
from 975° to 7180 and the thermal efficiency, perfect expansion being
assumed, drops from 0.680 to 0.505. (The heat loss due to exhaust is
reduced from 32 percent to 20 percent, but this 1s supplemented by
a 29.5 percent loss through the walls.)

Admitting, very optimistically, that the efficiency of the expan-
sion nozzle is 95 percent, the effective thermal efficiency of the
rocket is then 0.95 X 0.505, or 48 percent.

On a reasonable estimate, the thermal efficiency of an explosive
rocket cannot be over 45 to 50 percent.

5It is pointed out that, according to certain experiments, the
law (21) should be replaced by a linear law in the low-pressure range.
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In these conditions, it is concluded (cf. table I) that up to
speeds of the order of TOO km/h the simple rocket with explosive is
nearly two times less adNantageous than the normal engine-propeller
system.” " - S _

Ascribing to the latter an over-all efficiency of 0.28.xX 0.75 = 0.21
which is representative of a good engine and a well adapted propeller,
the equality between it and the explosive rocket is obtained at a
speed determined by (22), and which is

L - .
V = 0.2 \|s— : (32)

For powder B (L = 5,000,000), with Tth = 0.50, the equivalent speed
is

= 470 m/sec = 1690 km/h

For black powder (L = 2,760,000), with 74y = 0.50, the equivalent
speed is

= 350 m/sec = 1,260 km/h

At such speeds, the propeller is no longer a satisfactory
propelling medium and this practically leads to values below the
preceding values of the speeds where the explosive rocket may offer
the same over-all efficlency as the propeller-engine system.

(4) Effect of altitude on the operation of the rocket.- Equa-
tion (31) shows, when assuming that the surface s of the combustion
is constant, that the outside conditions do not effect the pressure
of combustion p and that, in consequence, the latter remains constant.
The temperature of combustion can, moreover, be assumed constant by
admitting that the cooling of the rocket can be suitably controlled.
As a result the volume of the rocket, determined by the conditions
upstream and in the throat of the nozzle vwhich remain constant, is
independent of the outside conditions.

But the speed of the Jet at the exit of the expansion nozzle is,
theoretically, affected by the external conditions.

Two cases are distinguished:

(a) The expansion nozzle has a fixed, divergent opening and is
of constant length. In this event, the nozzle, adapted to operate at a
certain altitude is either too long or too short for a higher or lower
altitude, or in other words, for a higher or lower outside pressure.
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The flow in the divergent section becomes imperfect, and, as a rule;
the efficiency of the rocket must decrease.

(b) The expansion nozzle has a controllable divergent opening, so
that, when the altitude increases, that is, as the outside pressure
decreases, the expansion ratio increases. The volume of the rocket being
constant, the thrust T increases as we, that is, as \Vith increases.

Referring to equation (26) which gives an approximate expression
for mnip, it is seen that this term increases with X, hence as the
outside pressure decreases. The thrust increases thus with the altitude,
which enables a rocket-propelled airplane to fly at a state of smaller
1lift and, consequently, to increase the speed faster than the propor-
tionality to 1/N& (& being the corresponding atmospheric density at
the particular altitude).

Moreover, by virture of (22) the over-all efficiency ng of the
rocket increases with the altitude, since n¢y; and V increase in
the same conditions.

But it should be remembered that these results, while obviously
quite Interesting, assume the rocket nozzle controllable in flight, and
this raises certain difficulties of realization.

11. Utilization of rocket for airplane propulsion - control of the rocket

The thrust of a rocket, at constant altitude, is independent of the
forward speed V when the surface of combustion of the powder is
constant and the nozzle is of constant shape.

The problem then is to vary the thrust either at will of the
pilot or in relation to circumstances in flight.

The means that can be envisaged to this effect for an explosive
rocket are the following: '

(a) Variation of the surface of combustion of the powder, a
procedure which can be applicable for a defined law of advance of
variation, but which seems inapplicable for a law that is arbitrary or
changeable at will by the pilot

(b) Modification of the cooling of the rocket, to reduce the
speed of exhaust. This effect, obtained to the detriment of the thermal
efficiency, is disadvantageous.

(c) Modification of the shape of the nozzle, that is of the throat
section. This procedure, difficult to realize for a nozzle of
revolution will, strictly speaking, be acceptable for nozzles of
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rectangular section. The effect of varying the throat section is a
modification of the combustion pressure and, in consequence, of the
thermal efficiency. This is also, in certain conditions, a dis-

- advantageous procedure:. - —

(d) Variation of the number of rockets in operation. While it is
a comparatively easy matter to start new rockets by means of electric
ignition switches, it is much more difficult to visualize the extinction,
at will, of a rocket in operation., This procedure, theoretically
~perfect as to the nonexistence of an effect on the thermal efficiency,
runs against serilous practical difficulties as regards its reversibility.

Finally, only procedures (b) and (c) hold some promise of practical
solution of controlling the thrust supplied by an explosive rocket, but
to the detriment of the thermal efficiency in certain cases.

12. Range of airplane propelled by powder rocket - Comparison with
orthodox airplane (engine and propeller)

Suppose “that the thrust of the rocket 1s by some means controllable
without changing the efficiency.

If the aircraft flies at a constant incidence for which its lift-
drag ratio is Cx/Cz> its drag for a total weight P 1is ch/cz and

it is this drag which must balance the thrust of the rocket, given by

formula (20). Therefore
T = m\’2nthL = Pey/cy (33)

The weight P at instant t 1s equal to the total weight at
take-off Py less the weight C of the explosive already consumed.
During time interval dt, the airplane covers in still air the
elementary distance (in km)

VvV dt

= = 77500

and consumes a welght of explosive equal to

dc=mgdt=m21%]=96x (3%)

By elimination of m between (34) and (33) and allowance
for P=PFy -C

ac  cz \Bntnl _ 9,810 czng  ac

TPy -Crcy 9,800 ° L ¢ By -C

dx
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. The range X (in km) in still air is obtained by integrating the
preceding relation between O and Cp, with Cy representing the '

total weight of fuel carried at take-off.

Hence
X - oy 228 3 = (35)
= -_ (o] S
,2T0 ¢, 98 Py - Cp

There is an identical formula for an airplane with engine and
propeller in which L represents the heat value of the fuel and 1g

the over-all efficiency of the engine-propeller unit. Assume now that
the engine-propeller unit is removed from this airplane and a powder
rocket installed, without affecting the fineness ratio of the airplane
nor its capacity in fuel load.

The original range X' becomes obvicusly X so that

& (36)

The over-all efficiency of a good engine-propeller combination
is 0.28 X 0.75 = 0.21, The heat value of the fuel is around 11,000 cal/kg.

For a rocket, an 7ng value of the order of 0.03 to 0.04 may be
counted on at ordinary speeds (200 to 300 km/h), and of the order of 0.09
to 0.11 at very high speeds (700 to 800 km/h). On the other hand, the
heat value L of the explosive is only 1/17 or 1/9 of that of fuel,
depending upon whether the explosive is black powder or powder B. Thus,
even at higher speed actually reached in current practice (300 km/h),
the powder rocket reduces the range 1 or 2 percent of its original
value, depending upon whether ordinary black powder or powder B is used.

13. Conclusions

The use of the pure explosive rocket as normal means of propulsion
is predicated upon the solution of two additional but important
problems: )

(1) stability of state of operation

(2) Possibility of easy and exact control

Assuming these two conditions to be satisfied, the study of the
over-all efficiency shows that it cannot attaln a value comparable to
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that of an engine-propeller system except at very high speeds, of the
order of 1,000 km/h. At speeds of the order of 300 km/h, the over-all
eff1c1ency does not exceed l/h of that of the engine-propeller system.
Lastly, the range of a rocket airplane at ordinary speeds is
insignificant by reason of the low over-all efficiency of the rocket
and the heat value of the ‘explosives.

These two constitutional defects absolutely prohibit any applica-
tion of the explosive rocket for normel airplane propulsion. At best,
it may be reserved, outside of interstellar navigatlion where it con-
stitutes the only propeller available, for the propulsion of special
devices at very high speed more rearly to projectile thah an airplane.
In this field, which is of interest to the artillery, some 1nterest1ng
and fruitful studles are offered.

14. General remarks on the efficiency of direct reaction propulsion
systems

From the above calculations and examples it is clear that the true
powder rocket constitutes a propulsion system of very mediocre effi-
ciency, at least as long as V does not assume very high values. This
is largely due to the fact that the speed of exhaust wg 1s extremely
high with respect to the forward speed V.

This is a characteristic common to all systems of propulsion by
direct reaction based upon the ejlection of fluid masses.

The propulsion systems to be considered (with direct or longitudinal
reaction) always operate by communicating to one or several masses of
fluid, ejected in continuous or periodical manner, a corresponding
speed opposite to the forward speed V. The liquids in question are
of two kinds: they either arise from the active bodies provided for
on the rocket and converted by combustion (such as powder gases in an
explosive rocket, for example) or come from the infinite surrounding
medium from which they are taken.

Iet mjy, mp . . . be the volume of the liquids of the first
category; w1, Wo . . . their corresponding speed of exhaust directed
downstream; and m', my' . . ., W', W' . . . the corresponding

quantities for the liquids of the secondary category, while assuming
that with respect to the exhaust orifices the surrounding pressure is
comparable to the general pressure p, of the outside medium. 1In
these conditions the momentum theorem indicates that the thrust T
developed by the system (or more accurately the real thrust T
diminished by the aerodynamic resistance of the propulsion system in



26 ' ' NACA TM 1259

the surrounding medium, which, in general, is altogether negligible)
has the value

T = Zmywy + mj'(wj' -V) (37)

On the other hand, according to the law of conservation of energy and
by definition of the thermal efficiency mn.y

Ny L = %EE@iwia + mj'(wj'2 = V2§1 (38)

This relation states that the actually utilized fraction of the
heat value of fuel consumed in unit time has been transformed by
variation of the corresponding kinetic energy of the actlve bodies.

To characterize the various efficiencies, the definitions of the
over-all efficiency g cand of the propeller efficiency 1, fixed

at the beginning of this report and expressed by (1) and (8) are slightly
modified.

In place of the over-all efficiency ng consider the energy
efficiency 1 defined by the ratio of effective power TV to power
supplied to the system, which is composed, on tpe one hand, of the
heat value ymili and, on the other, of the absolute kinetic

power % ZmiV2 of the consumed fuel

'
TP - 7] (39)

Ne =

Instead of propeller efficiency Tp = Ng/Mths consider the analogous
term obtained by replacing Mg by ne. To avoid any confusion, the
reaction efficiency 71, 1s expressed by

Tle 1 ™V (ll-O)

T] =] =
1

2

The thus defined efficiencies are more rational than those .
(ng, npg used up to now. They differ only by the addition of the

term %r, a term which in .general and for the ordinary applications, is
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negligible with respect to L, which justifies the current use of ng
and, Tp. The effect of adding the term %; is to make the indefinite
increase of efficiency with V, to which the method of defining 7,
or 1y leads, disappear.

Formula (40) with due regards to (38) assumes the form
. rmy L,
' 2

Formulas (37), (38), (39), and (41) make for a convenient and fairly
general discussion of jet propulsion as illustrated by several examples,

r = (41)

(1) Case of true explosive rocket.- There is no volume my' and

the volumes m3 are reduced to one, that is m. When T and V are
given, it is readily seen from the preceding formulas that

(a) m varies in the inverse sense of w

(b) To increase Ne», m must be reduced, hence w and 17y,
increased. The jet efficlency 7, remains then constant.

When the thermal efficiency n., is given, 71 varies as Npe

The thrust T for given V increases with m, and 7., as well as
remains then constant.

Ny,

Ir Meh and T are given, Ne varies necessarily as y and
these two efficlencies, with m and w constant, depend only on the
speed V. .Both are maximum for V =\2L. If V increases indefinitely,
both tend toward zero, while the efficiencies ng and “p defined

by (1) and (8), increase indefinitely and can be made to increase to
the interest of unlimited V.

By way of example the efficiencies 6ne and 1n, are plotted
against V 1in filgure 5 as solid curves. For a rocket with black
powder or powder B, on the basis of a thermal efficlency mngp

6Concerning'figure 5, it-is noted that 17, remains considerably

below unity (its maximum is equal to 0.707) but also that 1, exceeds
unity, because 1y = 21, for mnth = 0.5. This stems from the fact
that 1y is a conventional efficiency. Only 17 has from the

energy point of view, the sense of an "efficiency."




28 _ o NACA TM 1259

of 50 percent. The broken curves represent the corresponding effi-
ciencies ng and np which are practically equivalent to Ne and 7
. 't

up to very high speeds of the order of 1500 km/h.

r

In short, in the case of the powder rocket, the mediocrity of ng
and Mp arises from the inferiority of speed V with respect to the

speed of exhaust, but, contrary to what there is a tendency at times
to believe, no improvement can be obtained for a given thrust T and
speed V by an increase in m and by a decrease, correlatively, of
the speed of exhaust w. On the: contrary, in these conditions an
improvement in efficilency calls for a decrease in m and an increase
in w. Or else, recourse may be had to the principle of the thrust
augmenter tube, which is discussed in the following.

(2) Explosive rocket with augmenter tube.- For the sake of simpli-
fication suppose that there is only a powder volume m .and one outside

fluid volume m', both moving at uniform and identical exhaust speed w.

Thrust T and speed V are given.

Then, in order to increase 1ng, m must be reduced without

increase in W according to (37).

Assume that the thermal efficiency mny), 1is constant and known.
Equations (37) and (38) establish two relations between the three
variables m, m', and w. Consider m' and w as functions of m.
It readily yields

n'Ve - (2m + m')w?
n(w - V)2

dml
am

aw _ (m + n' )W + mVw - m'Ve
dm m(m + m')(w - V)

For positive thrust T, that is, for the system to be effectively
propulsive it is necessary that

(m + m")w >m'V

The discussion of the change in 7, and n, with m, m', and w is
summarized in the adjoining table IIT.

A
L )
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TABLE III

Value of W Variation of e and 7. ‘Vith m, m', ang w

Ne &and 10, increase (T and 71y, being con-
stants) when m decreases, that is, when:

m' m'

——— V<< w<V m' decreases, hence, when w 1Increases
am+m Y < Wamrw 2 2
m' . . '
Vee——— < W<V m' increases, hence W 1increases
2m + m' _
Vew m' increases, hence w decreases

The speed of exhaust w, being, generally, greater than V, it is seen
that, as a rule, to increase 17, and 7, it is necessary to increase

the volume m' of the fluid taken from the outside and to slow up the
ejected Jet. But, when w is lower than V, w being quite small

or V very great, the preceding table shows that these conclusions are
profoundly modified.

This point is reverted to again later on.

(3) Case of rocket with liquid fuel.- In this case the combustion
air taken from the outside takes the place of the surrounding fluid
passing through the tube of the explosive rocket with thrust augmenta-
tion. The discussion of the preceding case i1s entirely valid, with
the exception that the heat value L involved 1s much more considerable.

(k) Case of the liquid-fuel rocket with thrust augmentation.- This
case 1s analogous to the preceding one. The volume m' of fluid taken
from the outside must then include, apart from the combustion air, the
surrounding fluid on which the augmenter tube acts.

NOTE: It is for the obvious purpose of simplification that the
number of categories of volume and speeds mj, mj', w;, and wj' were

reduced to a minimum. The formulas (37) to (41) lend themselves to the
discussion of much more complicated cases.




30 | | NACA T 1259
CHAPTER IT

g Explosive Rocket with Thrust Augmentation
15. Principle and operation

The system is composed (fig. 6) of the rocket F and an
augmenter tube comprising three principal parts:

A nozzle T' conveying the outside air right up to the exhaust
of the rocket nozzle T (section Sj);

A mixer M, the portion of the nozzle at outlet S, of which it
is assumed that the mixture of rocket gas and the air
introduced through the nozzle T' is homogeneous and that the
temperature and the speed are sensibly uniform in the straight
section Sop;

A diffuser D, a nozzle in which the mixture coming from the mixer
is reduced in the exhaust section S to atmospheric pressure
by expansion or compression in the usual manner of gases in
nozzles. The preceding scheme can be complicated by multiplying
the number of nozzles T' and by making them terminate
successively on the axial flow so as to provide in more pro-
gressive manner the mixture which must be reached in the central
part of the tube called mixer.

The present study is limited to the rocket with simple augmentation
as shown in figure 6. It should be an easy matter then to extend it to
include the case of the rocket with multiple thrust augmenter tubes.

The thrust augmenter is a jet device which has the advantage of
pernitting the entrainment of one fluid by another without involving
any movable element; its addition to the explosive rocket gives the
latter the characteristics of a propulsion system without moving parts.

At first gight, the increase in volume which the effect of the
augmenter tube must procure and to which there corresponds a reduction
in the velocity of the entrained jet seems favorsble for increased
over-all efficiency, but the fact must not be lost sight of that the
effect of the augmenter, introducing the viscosity and friction which
determine the mixing of one of the fluids with the other, necessarily
exerts an influence on the thermal efficlency of the system.

An attempt is made further on to illustrate these two principal
aspects of the study of the explosive rocket with thrust augmentation.
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For the sake of simplification, only the over-all efficiency g
and the propulsion efficiency p are to be considered. It will be

recvalled that, strictly speaking, it is more rational to consider the
efficiencies analogous-but.defined by -a slightly different method, -
called the efficiency of energy and of reaction as visualized in the
foregoing. The more the contribution of the air by the augmenter
increases, the more the difference between the corresponding efficiencies
of these two categories are reduced, and this fact, together with the
consideration of forward speeds not exceeding 1000 km/h, rermits the
study of Mg and 71, to be made without trouble.

‘16. Operating formulas of the rocket with thrust augmentation

(a) Thrust.- Disregarding, as it seems admissible, the aerodynamic
resistance Re of the rocket with thrust augmentation; the thrust is

T =mwg + m'(wg - V) (42)

m and m' denoting the corresponding consumptions (in mass per unit
of time) of the powder and air extrained by the augmenter tube and we
the corresponding speed of exhaust.
This speed is given by
(m + m')w2 = m'Ve + 274 pmL (43)
(b) Efficiency.- With 74, Nps Ngs = Tgy X Np denoting, respec-

tively, the thermal, propulsive, and over-all efficiency of the rocket
with thrust augmentation defined as in 3, we put

ml
e -

Then the application of (42) and (43) readily gives

N, = “tzli q-‘Y(l +u)(u + 29, q) - ;Z] (Lh)

g = %;Ig(l +p)(p + 204y a) - l{l - (45)
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To determine the thermal efficiency Mtps it is necessary to

resort to a theory of gas boosting or augmentation discussed in
Appendix I to III.

It assumes the augmenter to be adiabatic, that is, without
exchange of heat with the surrounding medium, and compares the burnt
gases with the perfect gases, which assumes the presence of condensable
water vapor in the gaseous products of the explosion to be practically
negligible.

When, in these conditions, A and A' denote the total heat
(A = U + po) per unit mass of burnt gas and air collected by the
augmenter tube, functions which for perfect gases depend only the
temperature (dA = CAT, dA' = C'dT), the thermal efficiency ntn of the

rocket with thrust augmentation is

.Te
u/‘ dA + udA!
Ta
L

Ta and Te signify the temperature of the atmosphere and of the

exhaust, assumed uniform in the discharge section Se (fig. 6).

On denoting the sections of entry and exit of the mixer with sub-
scripts 1 and 2, where the pressure p; is assumed constant and

uniform, and the state of the gases in the combustion chamber of the
rocket with subscript c¢ and that of the air in the atmosphere with
subscript a, the total heat A and A' of the primary and secondary
fluid satisfy the relation

mh, + m'Ap' = kLnAc + m'<Aa' + Y;ﬂ + (1 - k)(my +m'Apt) (47)

the coefficient k represents the ratio of the energy -AC, (taken as

absolute value) of viscosity and friction in the mixer to the kinetic
w12 Wl.2

energy (m —— + m' 5 of the fluids at entry in the mixer, which can

be expressed by the qualifying relation

-0y

k = (48)

' 2
m(A. -~ Ay) + m'(%? + A " - Al'>
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Given the pressure p. = A p, in the combustion chamber of the

rocket and the pressure P = le in the mixer, the values of A and

a

of A' for these pressures can be connected.

In fact, the steady and adiabatic flow in the nozzles T and T'
giving access to the mixer is

ToApS = T9A. 5 | (49)

Ta)\.lS' = Tl' (50)

and the flow of the assumedly homogeneous fluid mixture which circulates
in the discharge nozzle or diffuser is

-5

The exponents s, s', and sg in (49), (50), and (51) represent a
y -1 y' -1 74 - 1
y 2oyt 7y

of specific heats at constant pressure and at constant volume of fluig
or of the correspondent fluid mixture), if the adiabatic flow in the
nozzles under consideration was reversible., The fact that the adiabatic
flow in real nozzles is not reversible (due to -the internal viscosity of
the fluid and the effect of the walls) causes these exponents to be
inferior or superior to their value 1n the case of reversibility,

depending upon whether the flow involved is accompanied by expansion
or compression.

number which is equal to

(7, 7', 74 = the ratio

In nozzle T expansion always preveails (XC > Xl) and

y -1
4

s <

In nozzle T' compression or expansion exists and s' 1is greater

7' -1

or smaller than *‘————, depending upon whether the mixer operates at
4

positve or negative pressure ()y Z 1),

Lastly, the flow in the diffuser presents a character opposite to
the preceding one. 2 o . _ ]
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Any compression existing in the nozzle T' is limited to the
value 11 of ratio A3} for which the air collected in the augmenter

tube is immobilized in the mixer inlet

1
2 \s'

vV
Zl = (l + -E—C_'i‘—a-__> | (52)

Given T., A, (the conditions in the combustion chamber) as well

1
as | = %[ (ratio of volumes of the augmenter tube) and \; (corre-

sponding pressure in the mixer), the equations (46) and (51) can be
used, with allowance for (Xl f;ll), to compute the thermal efficiency mnyy

of the rocket with thrust augmentation, provided that the factor k is
evaluated in these conditions, which certainly depends on the chosen
data.

The theory of gas augmenter tubes is not far enough advanced yet
to permit k to be determined in these conditions; the development of
the theory for determining the factor k experimentally calls for
systematic varlation of the experimental conditions.

However, it is a certainty that k ranges between zero (ideal
augmenter) and unity (augmenter limited to impossible evacuation).
Moreover, it is likely that k increases with the ratio p of the
volumes and with the difference (w] - wy') of the velocities at entrance

in the mixer, all other conditions remaining the same.

(c) Intensity of thrust.- As before, the intensity of thrust t
of the rocket with thrust augmentation is the ratio of thrust T +to
the discharge section Se of the augmenter tube

T

t =g

With pg = Py denoting the pressure at exit from the augmenter tube

and R and R' the Mariotte and Ggy-Lussac constants for powder gases
and air trapped by the augmenter tube, while taking into account (42),
the intensity of thrust +t of the rocket with thrust augmentation is

2
T (1 + ) W - uVwg

(53)

where We 1s given by (43). This formula is to be compared with the
pure explosive rocket formula (28).
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17. General formulas‘'for comparing the efficiencies of the true rocket
and the rocket with thrust augmentation

~_ Une problem involved here is to ascertain whether the addition of
‘a thrust augmenter to an explosive rocket produces certain advantages.

To this end, the rocket with thrust augmentation, for which the
equations of operation are to be established, 1s compared with a true
rocket operating with the same consumption m of the explosive of the
same nature, at the same pressure P, = xepa and at the same tempera-

ture T, 1n the combustion chamber.

The corresponding quantities for the true rocket are distinguished
by two dashes; the subscripts denote the corresponding states of
combustion and exhaust.

It should be noted, however, that the combustion temperature T,
in both types of rockets is very high with respect to the temperatures
indicated by Te or Te", T1, T1', and Ta. To simplify matters, the
mean specific heat at constant powder gas pressure between T. and Tg
is designated by Cp and the true specific heat of these gases is
regarded as quasi-constant and equal to hCp so that the temperature
of these gases remains within the sphere comprising the values Te, Te",
Ty, Ty', and T,. Lastly, 1t is conceded that within this field the

air trapped by the thrust augmenter has the same specific heat as the
powder gases. The factor h seen above is now a little less than
unity by reason of the increase in the specific heats of the gases with
the temperature.

These approximations, which are sultable for a summary study, are
used to write ‘

L =CylTc - T | (5k)
" Te" - Ta-
Tgp =1 -h R, (55)
: T. - T
Ngp = 1 - h(L + ) ————T: - T: (56)

It is easily verified thet this equation (55), corresponding to
the true rocket, is identical with formula (26) for this rocket, when
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putting h = 1, which disregards the variations imr specific heat with
the temperature, variations previously taken into consideration
summarily by introducing the factor h slightly below unity and which
represents the ratio of the specific heats of the powder gases'(or of
the air) at low and high temperatures.

On the other hand, the final temperature Tz at the mixer outlet
of the rocket with thrust augmentation is, by (47)

(L + )T = (1 - k)(Ty + pTy') + %EC - Ta<l -t -h- uhﬂ (57)

the parameter A represents the quantity CmTa/Ve.

The temperatures Ty, T;', To, and T," are linked to the

corresponding ratios of compression or expansion by the polytropic
equation by which the transformation of the gases in the corresponding
nozzles are assumed to be expressed. For the rocket with thrust
augmentation, the equations (49), (50), and (51) should be introduced.

For the true rocket

By the use of these expressions, the ratio of the thermal efficien-
cies mny, end 7ny," evaluated above assumes the form

hC

1 - - - -
th m S. s-sd k sd s
—— =1 - —=<4(1 - K)T.A. A + = T A - T.A
Nip Nh L cc 1 h “c™l c’c
k -s s'-s
-TaBl—h-uh-;—A)xl Yo p- (1 - K ‘j (58)

In this equation, the exponents s, s', and sg signify the
average values of the exponents of polytropic expansion or compression
which must be chosen as indicated previously.

The expression thus obtained lends itself to a very accurate
evaluation of the thermal efficiency ratios of the compared rockets
when considering a specific case, but its corresponding complication
does not lend itself to a simple study of a general case.
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As a result, this expression is simplified by putting s = s' = sg
which assumes that the compressions and expansions in the nozzles (but
not in the mixer) are adisbatic and reversible and the ratio s = z;i—l

7héériy'independent of the temperature.

Equation (58) becomes then

Mho_ oy Sm (x S 'S> T Zl h - uh “)x ¢ uh
W T - T = . - - - ~ AA
Mgh Mgp L) e\ L c a oA M

(59)

This equation can be simplified by utilizing equation (48) which
defines the coefficient k which is necessarily contained between
zero and unity.

By putting, in fact
ACy = -amL (60)

the factor W, essentially positive, represents the ratio of the
negative energy of the effects of viscosity and friction in the mixer
of the augmenter tube to the heat value of the explosive consumed in
the same time; hence equation (59) takes the simple form

T] - —
_Ekl'T_=l_xls_L°__ (61)

Tth Ntn

Now it is readily apparent that the thermal efficiency Ngn ©Of the

rocket with thrust augmentation is always lower than the efficiency nth'
of the corresponding true rocket.

The ratio of these efficiencies for rockets with suitably designed
H

P
nozzles depends only upon the ratios p = %; and A} = 5£ which

a
characterize the operation of the rocket with thrust augmentation and
determine the factors k or @& corresponding to the energy losses
which occur in the mixer.

At the present state of knowledge, it is unfortunately impossible
to evaluate the coefficient k (or @) corresponding to the mixer of a
gas thrust augmenter as function of 1ts operational conditions pn
and Xl . .
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Still, it may be considered likely, if not certain, that k
increases either when the ratio 4 of the volume of entrained gas and
of the moving gas increases, or when the difference (wj - w1') in the
respective speeds of these fluids at entrance in the mixer increases in
absolute value. On the other hand, the possible values between zerc
and unity in any specific case of coefficient k can be computed in
probable manner.

A further attempt to effect the comparison of the rocket with
thrust augmentation with the pure rocket is described later on.

As essential term for such a comparison, it is expedient to take
the over-all efficiency ratios =n, and ng" of these rockets.

These efficiencies are expressed by (45) and (22); hence

tg = EO W ¥ 2ngd) - u]

a«znth"q

and the ratio of these efficiencies is

’—J

Tlg=

Mg V(l + pu)(p + 2ngpa) - 1
—ﬁ- = 1"
g Vet 2

To ascertain whether the over-all efficiency of the rocket with
thrust augmentation is perhaps superior to that of the true rocket,
that 1s, whether the preceding ratio is perhaps greater than unity, it
is necessary and it suffices, according to (62), that

nth 1 M 0]
Tlth" > 1+ “E*‘ gnthnq<2\/2nth q - l> (63)

It is known from (61) that the ratio nth/nth" is necessarily less

than unity and it is easily verified that the second term of (63)
represents a quantity less than unity. In consequence, it still does not
prohibit contemplating that the rocket with thrust augmentation could
have a thermal efficiency. ntp such that, though below the mn," of

(62)




NACA ™ 1259 39

the corresponding true rocket, the inequality (63) might be satisfied
and that, therefore, it might yield

11g>71g

This is the question which is now to be analyzed thoroughly by
simplifying again the equation (59) of the thermal eff1c1ency ratios
of the two rockets.

18. Approximate analysis of the conditions of superiority of the rocket
with thrust augmentation .

Since the discussion is confined to the comparison of n¢p
and nth"’ it is admitted that h might be put = 1 in formula (59),

that is, the change of specific heat with temperature may be dlsregarded
since the covolume of the powder gases and the difference in the
corresponding specific heats of these gases and the air have been
ignored.

These approximations are indubitably legitimate considering that
only the comparison of the rocket with thrust augmentation and the
corresponding true rocket is involved.

The comparison is made by first visualizing the particular case
of the rocket with thrust augmentation with mixer operating at atmos-
pheric pressure (Xl = 1) and studying its possible efficiency in
relation to the ratio p of the volume of the thrust augmenter, then
by proceeding to the general case (that is, A # 1), and comparing it
with the first for an identical value of pu.

19. First specific case - mixer at atmospheric pressure (Xl = 1)

In this case, the rocket, operates strictly speaking, the same way

in the rocket with thrust augmentation and in the corresponding true

rocket, and the question is whether the addition of thrust augmentation
which does not change the operation of the rocket affords an increase
in over-all efficiency of the whole system.

Adopting the subscript 1 for the characteristic quantities of

this particular case, so as to reproduce the condition X = 1, we get,
with the approximations specified above,

Tth ) : m
— =1 - K|l + 57—~
(T‘th 1- 1 @Mgn 4
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Putting, for simplification'

1" " L-
a; = w2nthlq = 2nth 65 . (64)

the preceding formula becomes

_ (M) _ B
Y = (”th"> =1{1 - kl(l + &12ﬂ (65)

1

The ratio of over-all efficiencies is

% = G;g") B %E/(l + )+ 8®)Q - k) - w (66)
20

It is a question of knowing, a; being given, whether p values
can be realized such that X; is greater than unity (X3 > 1) and
eventually, to determine the maximum of Xj.

In this problem, the coefficient k3 of the kinetic-energy losses
in the thrust augmenter, defined by (48) and corresponding to A =1,
is a simple function of u which depends only upon the velocity and
the temperature of the fluids at entry in the mixer, that is, Te", we',

Ty, and V.

When these conditions are fixed, for example, by Tg, V, pc,
and mnyy,", the coefficient ky 1is a function determined by u, which

is certainly increasing with u, but on the subject of which, for lack
of being able to take up the theoretical study (cf. appendix III), or
being able to refer to systematic. tests which have not yet been made,
only more or less plausible hypotheses can be made.

In any case, an attempt is made to determine the necessary and
sufficient condition at which the ratio X3 could exceed unity.

TThe parameter a) previously defined by (64) represents the
ratio of the rate of ejection we" =\2ntp"L of the true rocket at
forward speed V. The importance of the speed ratio in all questions
of jet propulsion explains the fundamental part played by the
parameter aj.
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This condition can be expressed, by virture of (66), by

2
w(l - aq)
kKl <Ky =

- T+ ) (n + ar®)

The family of curves KXj(u) corresponding to different values
of &y can be.plotted on a diagram.

The values of this function are given in table IV.

Table IV
Value of Function Kj(pn) and the Maximum of This

Function for Different Values of aj

Value of K1 for Maximum For
_ [
al - Enth q ﬁu: O M= l H = oo Kl = M = al =
0 1 0.5 0 1 _ 0
.1 0 o 0 .67 .1
.25 0 .26L4 0 .36 .25
.5 0 .10 0 .11 05
1 0 0 0 0 1
2 0 .10 0 L1 2
L 0 .26k 0 .36 L
10 0 o 0 67 10
0 0 .5 1 1 €
L

The corresponding curves are represented in the diagram of
figure 7, along with the position of the maximum of Kj(u,aj). The
corresponding curve Ki(u) for any value of aj] 1is obtained by
interpolation, when observing that the maximum of this curve is
located at the precedintg place and has p = aj] for abscissa.

For the rocket with powder B (L = 5,000,000) whose thermal
efficiency n as true rocket may be supposed to be of the order of 0.4

to 0.6, the previous values indicated by the parameter aj =\,2nth"L/V2
correspond to the following values of the forward speed V:
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Values of aj 0l 0.1 0.25| 0.5 1 2 4 | 20f>

V(m/sec)prnth" = 0.4« [20,000{ 8,000 |%,000|2,000{1,000 {500 {20010

P'n," = 0.6|=|24,500|9,800 (4,900|2,450(1,225 |612 [2L5 {0

The scope of practical interest being confined to speeds below 200
or 300 m/sec at the most,8 it is seen that the only pertinent aj
values are those above unity, and consequently the curves Kj(u) to be
retained in figure T are those curves situated below the hyperbolic arc
corresponding to aj] =« (or V = 0) and whose maximum, which has the

1l -a
value (i—:_gi) and corresponds to the abscissa p = a;, is found to be

so much higher and shifted so much farther toward the right as aj; 1s
greater, that is, as the speed V is slower. When the curve kj(n) is
plotted (which for the time being must be made by way of assumption or
by guess), the ratio X3 of the over-all efficiencies can exceed unity
only at values u for which the curve kj 1is located below the

curve Kj(p) which corresponds to the value of a] in question.

The maximum of the ratio X; occurs at

é%[;&l +u)p + 832)( = k1) - é] =0

that is, at the point on curve k;p(p) where the latter is tangential
to a curve of the family

2+ u)(u+212)(1 -k) =p+a

a designating an arbitrary constant.

The parameter aj] being fixed, the ordinate Kj;' of the curves
of this family can be written

(a - a1)(a + a1 + 2pu)
p(l - a)°

K' =X - (68)

8For ballistic applications of rockets with thrust augmentation, it

2
is evident that much higher speeds can be visualized, but in this instance
the present or future aviation is of sole interest.
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and the curves of this family situated below curve Kj are obtained

by giving to the arbitrary constant &a some values greater than aj].

By way of example, figures 8 and 9 represent some.of these. curves
a5 -well as the-corresponding curve K; for two particular values
of a; (a1 = 20 and a3 = 10).

These values correspond, on a rocket with powder B (L = 5,000,000)
with a thermal efficiency mnth" as pure rocket assumed equal to 0.50,
to the following values and speeds V:

v 20

112 m/sec = 402 ¥m/h, for aj

V = 224 m/sec = 80% xm/h, for a; = 10

Consider, by way of example, the diagram of figure 8. On bearing
in mind that, in order to be able to plot the curve kl(u) corresponding
to the thrust augmenter involved, the eventual point of contact of this
curve with one of the curves of the family KX);' must be known, and
consequently also the volume up of the thrust augmenter which gives
the maximum superiority of the rocket with thrust augmentation over the
corresponding plain rocket under the particular conditions.

But, as already pointed out, the present state of knowledge on gas
thrust augmenters affords no accurate information about the behavior
of curve kj(p); hence the necessity of risking intuitive hypotheses
about this behavior, while stressing the fundamental interest which
attaches to the systematic study of the function kj(p) for different
types of thrust augmenters. The curve kj(u) which starts from zero
for u =0 1is likely to be an ascending curve when pu I1ncreases and
also when its curvature has a constant sine, hence, when it is of one
of the types (I), (II), or (III) represented in figure 10, depending
upon whether its curvature is turned upward or downward. The operation
of the thrust augmenter (at least according to the conception of
perfect or homogeneous mixture adopted in the ordinary theory) being
assured by the actions of the friction or the viscosity, we are inclined
to believe that these phenomena permit the entraimment of only a finite
relative volume with the losses which undoubtedly increase quite
rapidly as the limit of the volume is reached.

Following this point of view, the curve kj3(u) of type (I) of
figure 10 was provisionally adopted.

Now an attempt is made to compute the possible effect of such a
characterized thrust augmenter in the case of propulsion corresponding
to, say, aj = 20.
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Draw the curve Kj of figure 8 on the diagram of figure 11,
and then a curve C3] supposed to represent the effect of the thrust
augmenter. The powder gases arrive at the mixer inlet with a
speed wi = we" = 2240 m/sec and at an absolute temperature Tg"

equal £o? 1369° = 273° + 10960, the rocket being assumed to use
powder B and operate with a thermal efficiency (as pure rocket)
equal to 0.50 in a standard atmosphere (Tgy = 273° + 15 = 288°). At
the same time the entrained air arrives with a speed w1' equel to
the forward speed V = llE_m/sec, and at a temperature equal to the
surrounding temperature Tg = 288°,

The hypothetical curve (1 1indicates that, in these conditiouns,
the volume of entrained air cannot exceed 13.5 times that of the motive
fluid. This curve touches the family of curves Kj' of figure 8 at
a point M} in figure 11, of the abscissa p = 6 where k1 assumes
the value 0.3. It is for this volume that the thrust augmenter involved
should attain its highest superiority over the corresponding plain
rocket. It is easily verified by computing the thermal efficiency
ratio X3 for different points of the curve situated below curve k)
by equation (66).

This method affords the data given in table V as well as the
values of the thermal efficiency ratios Y3 computed by (65) and the
proper efficiency values of the visualized rocket with thrust augmenta-
tion, the efficlencies of the plain rocket taken for example being

no_ 050 no_ 0.05

Meh Ug
Thus in the preceding hypothesis, the over-all efficiency can be
sensibly doubled by the effect of thrust augmentation (in spite of
the 30-percent drop in thermal efficiency). It passes from the
obviously insufficient value of 0.05, to about 0.10 and approaches
interesting values.

9The value of Te" is, like those indicated in table II, obtained
by neglecting the covolume of the gases of the powder and the change
of their specific heat with the temperature. The error introduced
has evidently no significance for the purely speculative considerations
exposed above.
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Table V
Rocket with Thrust Augmentation Characterized
by Curve C; of Figure 1l
Values of:
( /70 [ Tth ' N
k Xy = (—5—) 1Y = (-——T) (n.) ( Observations
1 ol ng" , 1 nth' | ﬂg 1 nth)l
k=3]0.13 1.72 0.869 0.086 | 0.434% | Assumed
61 .30 1.92 .696 .096 .348 maximum
10{ .60 1.62 .385 .081 .192 of X;

Now the fictitious curve

replaced by the more optimistic curve
for which the limit of the corresponding entrained volume reaches 25

instead of 13.5.

C1 representing the function k1(p) i
Co, also shown in figure 11 and

The optimum operation of the thus-characterized

rocket with thrust augmentation corresponds to point Mp where

curve

Moreover, table VI, which gives, with the aid of curve

Co touches

Ky'!

or at p =

13.5 and kj =

0.33.

Co and

]

formulas (65) and (66), the characteristic elements of the comparison
for different u, can be prepared.

Table VI

Rocket with Thrust Augmentation Characterized

by Curve Co of Figure 11
Values of: _ ]
"Xy Xy Yq ('r]g)l (nthyl\ Observations
p =10 0.23 2.45 0.764 0.122 0.382
) Assumed
13.5 .33 2.5 .659 125 .329 maximum
of Xl
19 .55 2.12 Jhek .106 212

These hypothetical conditions, which are more optimistic than the
preceding ones, afford an over-all efficiency 2.5 times higher than
that of the plain rocket.
possible benefit by assuming the same rocket propelled at twice the

Next we compute in the same manner the



46 '  NACA TM 1259

speed, that is, a3} = 10, the case which corresponds to the diagram of
figure 9. In this case curve kj(u) will obviously be below and to
the right of that which corresponds to the preceding case, since, the
temperature conditions not being modified at entry in the mixer, the
difference in jet velocity, which causes the entrainment of one by the
other at the expense of a kinetic energy loss characterized by kj,

is reduced from 2240 - 112 = 2128 m/sec to 2240 - 224 = 2016 m/sec.
However, the curve Cj of figure 11l is retained for comparison with
the curves of figure 9 which correspond to the case of a; = 1. It
affords the disposition represented in figure 12 for which the best
operation of the rocket with thrust augmentation corresponds to

point My, that is, to u = 5.3 and k; = 0.25. In this case, where
the plain rocket has a thermal efficiency of n¢L" = 0.50 and an
over-all efficiency of qg" = 0.10, the characteristic elements of the
comparison are summerized in table VII.

Table VII
Rocket #%ith Thrust Augmentation Characterized

by Curve Cy of Figure 12

Values of:
Y o ~
- Xy Yy (ng)l (nth)l Observations
L= 3 0.13 1.592 0.866 0.159 0.433
Assumed
5.3 .25 1.70 .736 .170 .368 maximum
‘ of X
10 .6 1.50 .3k .120 17

When the curve (1 1is replaced by Co, a more optimistic
estimation of the function k), (less optimistic, however, than in the
case of aq = 20), the figure 12 shows that the best operation of the
rocket with thrust augmentation corresponds to the point Mo
where p = 8.8 and k3 = 0.18. The characteristic elements of the
comparison for different values of p are indicated in table VIII.
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Table VIII
Rocket with Thrust Augmentation Characteriied

by Curve Co of Figure 12

Values of:
/’kl Xy Yy (ng)1 (nth)LY Observations
w= 6 | 0.12 | 1.96 | 0.873 | 0.196 | 0.436
Assumed
8.8 .18 2.08 .8o4 .208 Jho2 maximum
of Xl
15 .38 1.88 .563 .188 .281

On reconciling the data of tables VII and VIII for a; = 10 with
those of tables V and VI for aj = 20, it is seen that, when aj] passes
from 20 to 10, that is, when the speed V passes from 402 to 804 km/h,
the thermal efficiency nth" of the plain rocket being assumed equal
to 50 percent, the maximum ratio of the over-all efficiencies of the
rocket with thrust augmentation to the plain rocket decreases a little
for the comparable hypotheses of the possible variation of kj(p) which
characterizes the mixer of the thrust augmenter. This maximum ratio
shifts from 1.92 to 1.70 or from 2.5 to 2.08, depending upon whether kqy
is given the shape of curve C) or Cp in figures 11 and 12.

In the second case (a; = 10 or V = 804 km/h), the over-all
efficiency of the rocket with thrust augmentation thus reaches at the
most and by virtue of the doubled efficiency of the pure reference
rocket values of the order of 0.17 to 0.208, depending on whether k;
follows one or the other of the hypotheses Cy or Csp.

It must therefore be concluded that, if these hypotheses are
realizable, the rocket with thrust augmentaetion is, at these high
forward speeds, susceptible to an over-all efficiency comparable to
that obtained either with the orthodox engine-propeller unit at low
speeds or with the pure rocket at considerably higher speeds.

The accuracy of this result depends only, it is pointed out, on
the possibility of securing a sufficiently efficient mixer, and this
can be established only by appropriate experimental research.

v
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A few more data are added to determine exactly what can be
accomplished by a rocket with optimum thrust augmentation corresponding
to the conditions of table VII, that is, to the point M; of figure 12:

a 4= 10 p =5.3 kl = 0.25 (qg)l = 0.170 (nth)l = 0.368

In this particular case, the temperature T, of the gases at the
thrust augmenter exit is (according to (56) simplified by h = 1 and

where T_. = 2450°) equal to 273° + 231° = 504° instead of 273° + 1096° = 1369°
for the powder gases at entrance in the mixer.

The speed of eJjection of the gases we at the exit of the thrust
augmenter is 925 m/sec at a propulsive velocity of 22k m/h.

The intensity of thrust t (thrust per unit of sectional area Se
of the thrust augmenter outlet) is, according to (53), where R = R’,
equal to 2.25 times the pressure pg of the outside atmosphere at a
temperature of the latter equal to 288°.

Lastly, the air intake section Sy for the thrust augmenter
referred to the evacuation section Seg of the thrust augmenter is

In other words, the part upstream from the thrust sugmenter has a
frontal section about twice as great as the part downstream.

20. Second general case - effect of pressure Py at the mixer

The ‘pressure p; at the mixer of the thrust augmenter being
defined by the ratio Ay = Pl/pa’ it may be asked whether it 1s

important to increase the over-all efficiency 1, of the thrust
augmenter and to increase or decrease A7 for a specified corresponding
volume p = m'/m and, eventually, what value this characteristic ratio
should have to ensure the maximum of g -

In other words, ng being, for the conditions of combustion
(TC, De), @ specific fuel and atmosphere, sclely a function of the
operating conditions Al and p of the thrust augmenter, it means
finding the values of the parameters that give the highest possible ng,
the hypothetical variation of which had been previously studied as
function of p for the particular case A = 1.
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Retaining the approximations of the preceding article, the partial
derivative of Ng Wwith respect to Aj (n being fixed) is analyzed.

By derivation of'(62)'with-respect to Ay-

J ' d ' :
z-g_ [ T+u Tth (69)
and the function 2 'ﬁnder consideration has the same slgn as the
function

which is now being considered.

By equation (59), where for simplification h = 1

_ Cn -s -s B ( L>)“ -s|| dk
W= - ﬁ;ﬂ"f TelM - Ac - uTg |1 - (1 + Sa /ML T +
skC
-3
AT A EC + uTa{l + 3¢ (70)

or with (59) taken into account

, -s-1
T ™ <= skC_Aq ~°
W= K—th th) ok + L T. + uTa<l + gi) (71)

kﬂth" axl ,qth"L

The formule shows that W 1s the sum of two terms, the second of

which is essentially positive and the flrst of contrary sign to %§;u
' 1

Therefore, when g%; is negative, W 1is essentially positive and g

is increased for a fixed corresponding volume p by increasing A,
that is, the pressure in the mixer. It will be recalled that A; can
in no case exceed the limit value

V2 s' :
Zl = <l + m) (52)
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As for the variation of the function . kj, as in function of u,
the variation of k for A} =1 can be effected only by way of an
assumption. The function k defined by (48) and which characterizes
the losses of kinetic energy in the mixer, depends, for an optimum
mixer, only on the conditions (pl, Ti, T1's w1, wl') at entry in the

said mixer and the corresponding volume: of M.

Given the nature of the fluids, the conditions (p., T.) in the
combustion chamber of the rocket and the outside temperature, the
factor K for the best mixer depends only on Ay and u.

.In first approximation, it may be admitted that, for a specified pu
and constant temperature in the mixer inlet, k increases with the
difference in the jet velocities (w; - wi') entering the mixer, the
difference involving the friction and the viscosity, and so enables the
mixer to accomplish its function.

A change N\ modifies both the jet velocities (wl - w1') and the
temperatures- T; and Ty' of the fluids at the mixer inlet.

Suppose that the effect of the variation of (w1 - 'Y on k is
preponderate. In that event it may be admitted that Jk/OA} has the
same sign as d(wy - w1')drj; this derivative is expressed as

2
w1

-8 s)
ECETC(I - A M

2
il

V2 o+ ECmTa(l - %)

whence, by utilizing the notation gq = L/V2, while putting B = L/CyTy

and bearing in mind that ngp'L = CuTo(l - 2. %), L = Cp(Te - Ty)

d(Wl - Wl') s-1 [CmTg
——— = S8A} \’
dkl . 2
—

' — |
\}(T“L B) - 2° E.* B(X - nth"j - E* B(1 - nth"zl\ﬁ - M7+ %
\/1 + B - MSE+ B(1 - “th"Zl\/l PR 2%

(72)

iR
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This formula and consequently also g%z cancel out for the
value 1o of A1 so that

E_ + B(1 _ nth"zlg E+2%;l- (1 + B) % | 73)

B(1 - ngp")[L + B2 - ngn")]

Z2=

In this formula, it is advisable to give the exponent s a value
corresponding to the sufficiently low temperatures prevailing in the
mixer, especially when 1Is 1is less than unity. Choosing the '
value s = 0.286 (which corresponds to the reversible adiabatic
transformations upstream from the mixer with a specific heat ratio
of 7y = 1.4) affords the table IX for the values 1lp of a rocket with
thrust-augmentation using powder B and for several thermal efficiency
velues 71¢p" of the pure reference rocket and at different jet
velocities V (at standard atmosphere, that is, Ty = 273 + 15 = 288°).

Table IX
Values of lp for the Rocket with

Thrust -Augmentation Powder B

Nep" = 0.2 0.4 0.6

n/sec

V= 0 0.852 0.637 0.191
100 .901 659 .203
200 1.0 ST37 .238
300 1.154 .880 .312

The variation of 1o as function of V for different n.," 1is
plotted in figure 13. This diagram shows that, up to very high speeds
of propulsion V and except for very low mnyp" of the reference
rocket, quantity 1o 1s less than unity. "It is also possible to com-
pute the upper limit of the speed of propulsion V above which, for
given n¢n" and Ty, the quanmtity 1, is greater than unity. This
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speed Vo, derived from (73), where q = L/V2 and 1o =1, is given
by the formula

Enth"L .
V2 =\[l + B(l - T].th") (7"")

and indicated in table X, and plotted in figure 14, for two values
of T, corresponding to standard atmosphere O and 6000m.
Table X
Speed Limit Vs for which 15 =1

Rocket with Powder B

Mtp = 0.2 | 0.3 | 0.4} 0.5 | 0.6
for T, = 288°
V. = (stgndard sea level) 202 | 277 | 36k | k71 | 61k
b =
(o]
m/sec |for Ty = 2k9 177 | 245 | 322 | W9 | 549

(6000m)

It is readily apparent that for acceptable n.," values (ranging
between around 0.4 and 0.6) and at speeds below V = 1000 km/h at
least, that is, in the range of application in question, the quantity I,
is certaiply less than unity.

From this .it is concluded that

() Function k(M ,u) is representable by a set of curves
analogous to that of figure 15.

(b) The point of optimum operation (Aj,u) where the over-all
efficiency 17 of the rocket with thrust augmentation attains its
highest maximum lies between the ordinates A; = 1o and Ay = I7.

The location of this optimum point is predicated upon the knowledge
of k(kl,p), on the.subject of which the lack of insufficient theoretical,
as well as experimental information, has already been noted. However,
proceeding from the value A7 = 1 for which the variation in over-gll
efficiency 1q had been studied as function of u according to certain
assumptions régarding function Xkj(u) = k(:A = 1,n), it should be
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interesting to know whether 1 improves or worsens by lncreasing A3,
while the parameter p 1is assumed fixed. This involves studying
the function W(Ap,u) expressed by (T71) and meking Al = 1. This
function then becomes o oe maeen - -

1
Te + pTg{l + ——>
ok skl & a< 2A
l(e) ( * TNCTACY gl * Tth Te - Ta (75).

In normal conditions, that is, when 1, 1is less than unity (case

of figure 15), (g%—>x 1 is a function of p which is O, for u =0
l:

1
and constantly increases with p up to the limit at which k reaches
its maximum equal to unity; but k; 1is also (cf. fig. 10) & function
which presents the same characteristics. Hence, it follows that,
according to (75), Wi 1is the difference of the two functions of u,
similtaneously zero for u = O and increasing with p. At u = 0, Wi
is zero and the value of A; does not affect the over-all efficiency
when the augmenter tube is practically nonexistent. When u increases,
the sign and the value of W; depend upon the corresponding course of
the two positive terms of which W3 constitutes the difference. This
corresponding course is actually too little known, (not to say entirely
unknown), to make it possible to bring the preceding considerations to
likely conclusions or to numerical interpretations.

B. ORDINARY FUEL ROCKETS

Chapter I - True Rocket with Ordinary Fuel

21. Definition

This type of rocket is illustrated in figure 16. It comprises a
generator G of burnt-gases feeding an expansion nozzle.

The generator draws the fuel through the pipe line C from tank R
located outside and the air required for combustion from the outside
atmosphere through an orifice A of the air intake, facing upstream.

The expansion nozzle evacuates in the outside medium through the evacua-
tion orifice E 1located at the rear end of the rocket. The fuel may be
solid, liquid, or gaseous, but for the present, the discussion is limited
to liquid fuels such as are obtained by the distillation of kerosene or
coal and which are in every respect the most interesting for application
in aviation by reason of their great heat value, of the order of 10,000
to 11,000 cal/kg, which permit the lowest consumption by weight and
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hence the greatest range. In order that the nozzle expand the burnt
gases effectively with increasing velocity (starting from an initial
state without velocity) it is necessary that the combustion of the fuel -
be effected in the generator at a pressure higher than the surrounding
pressure and, consequently, that the fuel and the combustion air be
compressed suitably in this generator before combustion, unless the
combustion itself is effected with increased pressure, as, for example,
at constant volume. Thus, the generator constitutes a heat engine with
internal combustion characterized by the fact that it furnishes no
mechanical energy utilizable on the outside, but solely burnt and com-
pressed gases. The essential importance that attaches to the increase
in the thermal efficiency of the rocket stipulates, as for all heat
engines, that this compression be effected as much as possible before
combustion, whatever the method of combustion used (constant volume,
constant pressure or otherwise). The corresponding compressor or com-
pressors absorb energy which must be supplied by a part of the generator
under the action of all or part of the burnt gases, the part that con-
stitutes an engine furnishing exactly the entrainment énergy of the
compressor or compressors. Different types of generators, more or less
complex, can thus be visualized, composed of elements connected more or
less to the constitutive elements of known heat engines. For the moment,
it is assumed that the products ejected by the rocket constitute a homo-
geneous mixture moving at uniform exhaust velocity we in the exhaust
section.

22. Rocket operation formulas

Using the same notation as for the explosive rocket, apg indicates
the mass of air required for the complete combustion per unit mass of
fuel; a, the mass of air effectively consumed by the rocket per unit

mass of fuel; a = iL - 1, the "dilution" of the combustible mixture
0

utilized in the rocket.

The rocket consuming m mass units of fuel per unit time, the
corresponding volume of consumed air is

ma = map(l + «) ('76)
and the total volume of ejected gases is

m(l + a) =mE+aO(l +onz[

According to the definitions adopted at the start of the present
report and by disregarding again the outside aerodynamic resistance of
the rocket conceived as an isolated system of propulsion, the following
expressions can be immediately established:
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(a) The corresponding speed of exhaust we is

engpk a
Wa = V,|—— + — = oe - (17)
© (1+a)v2 L1+a

L. denotes the lower heat value at constant pressure per unit mass
of fuel, to be expressed 1n units of energy. In the M.K.S. system,
L is represented, for a fuel of 11,000 cal/kg, by

11,000 x 9.81 x 425 = 45,900,000, as compared to 2,760,000 and
5,000,000 attributed to black powder and powder B, respectively.

Equation (77) shows that, Nth Pelng assumed positive, the speed
is always positive and that the latter is always greater than V as
long as

En'thL > V2

(b) The thrust T 1is given by the formula

T = m‘zl + a)vg - a\ﬂ = maV[/G—;E) <]_ + 2:‘1;1211') -1 (78)

(c) Intensity of thrust t, that is, the traction referred to the
exhaust section S of the ejected gases, is given by the formula

2 |0 - )

14

Ve 2Ngnl a f | 2ngpb a
= 1 -
Pa RT, (1 + a)-v2 A al \!(l . a.)V2 *T+1a (79)

ct
i

R denotes the Mariotte and Gay-Lussac constant per unit mass of
burnt gases assumed comparable to perfect gases (p = pRT) and Te 1is
the exhaust temperature.

For complete combustion and completely adiabatic rocket
(generator + nozzle)

. . .
- y - 1\ Tth
RTe=RTa_+(7 )l+a. (80)

NIRRT LRI UL LI R L LT UT T T u M mm m e
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y 1is the ratlo of specific heats of the burnt gases (average value
between Te and Tg in this ratio). ' '

(d) The propulsive efficiency Tp of the rocket is according
to the qualifying equation (9) )

2 2n . L
N = ™V __ _aV (1 + a)<; . _th ) _ (81)
mnthL nthL a 2

(e) The over-all efficlency Ng of the rocket is according to
the qualifying equation (8)

V2 27, L
a (l + a)( th ) _
g = Mepllp =71 a av2 (82)

23. Note - case of the explosive rocket

In order to obtain again the case of the true explosive rocket,
it is sufficient to nullify the corresponding air consumption a of
the rocket considered here. In this event the formulas of article (7)

becone
2
M, =V - (21)
1% thL
2Mth
Mg = WL (22)

24, Simplification of the preceding formulas

In the foregoing formulas, the ratio we/V plays a capital part.
Consider the effect of the ratio (1 + a)/a on the latter. For the
combustion involved, the proportion of air required for complete com-
bustion is, theoretically, at least of from 15 to 16, and, for practical
purposes, of from 20 to 25. The advantage of raising g by increasing
the corresponding volume (1 + a) of the burnt gases and consequently
the proportion of air a, except when it lowers the thermal effi-
ciency ntp too much, prompts the consideration of values of a of

1+ a
the order of 25 tvo 30 at least. The ratio ( a ) which tends toward

“unity when a increases differs therefore by 3 to 4 percent at the

most.




NACA TM 1259 ' 5T

Formula (77) can be written.

We ( a , . Nthl
- = 1+2
V: l+a ayz

a
1+ a
error of no more than 1 to 2 percent, which 1s regarded as being

entirely negligible in the present study. Replacing, accordingly, the

1l + a

The replacement of - by unity introduces a corresponding

ratio

by unity, formulas (77) to (82) become, after
making L/Ve = q

We 2Nthd
o\t = (83)
’ 2n+p4
T = maV|\|1 + :h - _1 (8#)
2 2N, 2n44,9
v th th
t = p, RTe[i + — -\’l + — (85)

M4
RT, = RT, + <7—-;—-l-> _th7 2 (86)
2n¢nd
a,
Ny = .\’l + -1 (87)
P nthq[ a
2n¢pa '
a th
g =-a[:l + . " %} (88)

In these equations, the nondimensional quantity

Mthd  Mtnl
= a = ) ( 89 )
aVv

Q

plays a preponderante part. In particular, the propulsive effi-
ciency o depends only on & by the formula

np = FNE 24 - 1] (50)
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This shows that n, increases from zero to 1, when Q decreases

from infinity to zero, that is, when V or a (ﬂth being positive

and finite) increases indefinitely. In the same conditions, the over-
all efficiency g increases from zero to the limit 74, below unity.
Efficiency ng and 7np are therefore always less than unity, contrary
to what had been established earlier in the case of the explosive
rocket., This arises from the fact that, owing to the preceding approxi-
mation which disregards the unity beside number a, the mass of fuel in
the corresponding mass of burnt gases is neglected. Efficiencies 71g
and np are then comparable to ne and 17, which have been rationally

defined in article 1k,
25. Propulsive efficiency

According to (90), this efficiency depends only on parsmeter Q.
Figure 17 shows this parameter Q plotted against =a, V, and 17y for
a type of fuel whose heat value (low and at constant pressure) is
11,000 cal/kg or L = 45,900,000.

It will be noted that for
Ntp ranging between 0.30 and 0.70
a ranging between 20 and 150

V ranging between 25 and 200 m/sec (90 and 720 km/h) the parame-

ter Q ranges between the extreme values 45,900,000 X —0.30 __ 2.3
o 150 x 500
and 45,900,000 x-————%%:i = 2570 for the fuel in question. The values
¢ 20 X 25

of np for these extreme values are 0.592 and 0.0275, respectively.

The variation of 17 as function of @ is given in table XI and
plotted in figure lg.

Table X1

Q= 0 1 2 5 10 100 1000 0

= |1 |0.732| 0.62 | 0.464 | 0.358 | 0.132 | 0.045 | O

Thus, it is seen that the propulsive efficlency Mp for a given
thermal efficiency 7y, cannot attain values comparable to the normal
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efficiency of propellers (which is of the order of 0.60 to 0.80)
unless the speed V 1is very high or else the corresponding consumption
of air a 1is very great.

This 1s another instance of one of the essentiasl characteristics
of Jjet propulsion, already pointed out in article 14, namely, that the
propulsion reaches high values only when the Jet expels a large volume
at the lowest possible speed of ejection with respect to the speed of
propulsion, which is obtainable by increasing the latter. When p
alone is considered, an increase in this efficiency involves the
reduction of the thermal efficiency mtp, since it also reduces the
parameter Q. This is-entirely natural, after the foregoing, because
the speed of ejection of the burnt gases is lowered. But, it also
lowers the over-all efficiency, as will be shown later..

26. Over-all efficiency g

According to formula (88), the over-all efficiency ng Tfor a
given fuel depends upon the thermal efficlency n¢n and the

ratio q/a = L/aVE, that is, on the product aV2. It is readily
apparent that Mg increases when 7y, increases, when the dilution a
increases, when V increases.

Table XII gives the over-all efficiency 1y as function of V

and 7. on the basis of the consumption of a %uel whose heat value

is 11,000 cal/kg and a dilution a either restricted to a minimum a = 15

or 5 times greater than this low theoretical limit (that is a = 75).
Table XII

Over-all Efficiency g

a =15 a="7>

/ —A N |/ b N\

Typ = 0.2 0.k 0.6% |'qiy =0.2| 0.4 0.6

m/sec ’

V.= 50 0.017 0.025 | 0.031 0.037 0.053 | 0.066
100 .033 .048 .0595 .066 .099 1245
150 L0475 .070 .087 .090 .138 .1765
200 .060 | .090 113 .1095 172 .202
250 .0725 .109 1375 1245 .202 .263
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These data have been plotted in figﬁre 19, along with the zone of
the normal values of the over-all efficiency g of the conventional

engine-propeller system, ordinarily ranging between 0.17 and 0.225.

This diagram brings out the unfitness of the rocket as substitute
for the engine-propeller system at the speeds now reached in aviation.
On the other hand, the superiority of the rocket is manifest at the
high speeds of the order of 70O to 1,000 km/h if the rocket in these
conditions is assured of a sufficiently high thermal efficiency fnip

with a falirly great dilution a.
27. Thermal efficiency of the true rocket

The combustion of the fuel by means of air must be effected by
compression of the combustible mixture as in a heat engine. The
thermal efficiency is largely dependent upon the rate of this prelimi-
nary compression.

Different types of generators may be conceived. In particular,
the compressor of the generator may be actuated by a standard engine
(with carburation or injection) whose exhaust may be added to that of
the rocket, but without appreciable effect with respect to the propul-
sive reaction; or a portion of the expansion of the gases intended for
the rocket may be utilized to drive an engine (reciprocating or rotary)
engaging the compressor. These two solutions are compared.

For the sake of simplicity, the study is restricted to the method
of combustion at constant pressure (theoretically realized in the
Diesel engine) because it supplies the most advantageous thermodynamic
cycle at a specified maximum pressure in the heat machine. In addition
to that, only one fuel is considered, that is, the fuel studied exhaus-
tively by Rey and which is similar to the illuminating oil called
kerosene in the United States, and for which a number of calculations
had been made and the data of which are used in this report.

Before any evaluation of the possible thermal efficiency it is
readily apparent that, if a dilution a of the order of those realized
in gasoline or heavy oil engines and consequently, fairly low (say, a
of the order of 20 to 35) is involved, it should be possible to reach a
thermal efficiency for the rocket superior to that of a corresponding
reciprocal engine because the principal part of the expansion is
effected in the nozzle of the rocket (where the energy losses are, or
can be, nearly zero) and this expansion is pushed to atmospheric
pressure.
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It is Justified to anticipate that, with a weak solution of,

.say, 20 to 35, it should be possible to obtain a thermal efficilency ﬂth

of at least the order of 0.35 to 0.40 with a true liquid-fuel rocket.

'Adopting the figure 0.40 for a dilution a = 30, formula (88) shows
that the corresponding rocket can attain an over-all efficiency equal to
that of the best engine-propeller system used at present in aviation
(engine consuming 210 g of fuel per hp/h, propeller efficiency 0.75),
that is, ng = 0.28 X 0.75 = 0.21, for a speed V = 422 m/sec = 1520 km/h,
a speed at which the present-day propellers will undoubtedly have but an
insignificant efficiency.

'28. Theoretical cycle

Rey's kerosene (Bulletin de l'Association technique maritime et
aeronautique, Paris, 1928) which is used as typical fuel is defined by
the following composition by weight:

40 percent of nonane (09320)
25 percent of decane (CygHop)
15 percent of tridecane (Cj3Hpg)

20 percent of hexadecane (C16H3L)

Its low heat value at constant pressure in standard conditions
(pg = 1.033 kg/cm2, Ty = 273 + 15 = 288°) is L = 11,500 cal/kg, or
in M.K.S. units, L = 425 x 9.81 x 11,500 = 48,000,000 kg per unit of
mass (mass of 9.81 kg).

Its complete combustion requires a minimum weight of air (23.6 per-
cent 0, 76.4 percent N) equal to 14.68 kg per 1 kg of fuel.

The molecular specific heats for gases or vﬁpors are those glven
by Kast, according to the experiments by Pier and BjJerrum, that is,
(in cal/mol kg)

for Op, Np, and air: C = 6.535 + 0.0009 T

for HpO (vapor): C = 4.815 + 0.0043 T

for COp: N C = 10.665 + 0.00116 T
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The molecﬁlar'or Avogadro constant for perfect gases is taken
equal to . : . _

R=C-c=1.985 (cal/mol-kg) |

On this basis, the characteristics of the theoretical cycle of a
mixture of 1 kg of the preceding fuel and a specific emount of air with
more or less excess can be computed; the said cycle comprising g

(1) A reversible adiabatic compression of the air and a corre-
sponding compresslion of the kerosene in the liquid state, the latter
being negligible as to -energy input and temperature rise experienced
by the fuel

(2) An adiabatic and complete combustion at constant pressure

(3) An adiabatic and reversible expansion of the products of the
preceding combustion, pushed to atmospheric pressure

In the following, the results of the calculation of this theoreti-
cal cycle, based upon the above data with strict consideration of the
variation of temperature with the specific heat are indicated. The
care given to the execution of these calculations should not cause any
illusion regarding the significance of the results. It simply aims at
freeing the latter from all causes of error other than that, already
perceptible but which remains unknown, which include the values adopted
for the specific heats, which result in the latest determinations. Table
XIII gives the data in question. It shows, for digferggt compression

ratios A, = Pc/Pa and for different wvalues o = —a of the
corresponding excess of air in the combustible mixture
14
The temperature Ty of the air at the end of compression
The temperature T_. of the mixture at the end of the combustion
The temperature T3 of the mixture at the end of the expansion
The energy Cg (in cal) absorbed by the compression of the air,
that absorbed by the compression of the kerosene being regarded
as negligible
The energy Cg (in cal) produced by the expansion of the burnt gases

The effective energy Ce (in cal) of the cycle, obtained by the
difference (e = L3 - Cq
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Lastly, the thermal efficiency .nth = C/L. of the theoretical cycle
involved (L evaluated in cal, or L = 11,500)

These data refer to the initial conditions

py = 1 kg/en® T, =273 + 15° = 288°

Table XIIT

Theoretical Cyclé at Constant Pressure

: Ca | G Ce
a | Ac = pc/Pa| Tb Te Ta (cal) |(cal) | (cal) | Tth
15 621 2,860 | 1,669 | 1,239 | 6,555 | 5,316 |0.4615
0 30 751 2,925 | 1,472 | 1,650 | 7,925 | 6,275 | .545
L5 841 | 2,973 | 1,372 | 1,981 | 8,711 | 6,730 | .585
15 621 | 1,947 | 1,026 | 2,478 | 8,278 | 5,800 | .503
1 30 751 | 2,032 903 { 3,300 [10,012 | 6,712 | .584
45 841 2,103 848 | 3,962 11,155 | 7,193 | .625
15 621 1,561 7831 3,717 | 9,607 | 5,890 | .512
2 30 T51| 1,645 690 | 4,950 11,835 | 6,885 | .598
45 841| 1,730 654 | 5,943 13,368 | 7,425 | .645
15 621| 1,353 667 | 4,956 {10,900 | 5,944 | .517
3 30 7511 1,450 594 | 6,600 |13,628 | 7,028 | .611
45 841 | 1,545 5721 7,924 |15,562 | 7,638 | .66k

The variation in thermal efficiency n¢p 1s represented by the

curves of figure 20. These curves confirm the well-known increase

in 7n¢np with the compression ratio A.. They also show that nth
increases, for a fixed A, when the corresponding excess of air a in
the combustible mixture is increased. This result, obtained in spite
of the general reduction of the temperatures of the cycle, is not at
variance with the laws of thermodynamics. It is simply an unjustified
comparison of internal-combustion engines with properly cyclic machines
as it is sometimes pretended that the thermal efficiency of the former
is always so much higher as the temperatures of the cycle are, in
general, so much higher. On assuming that the excess of alr increases
indefinitely, these temperatures drop more and more and it becomes
increasingly justif{ed to admit the same heat properties for the burnt
gases as for pure air and, at the same time, to consider the specific
heats of the former and latter, regarded as identical, as constant. A
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classical reasoning makes it possible to establish that the thermal
efficiency of the theoretical cycle tends then toward the value

_ri
Ty = 1 = % - (91)
with 7y of the order of 1.3% to 1.k4.

With this formula, the following values of 14, are obtained:

Ae =15 30 5
_ ffor 7 =1.35 0.505 0.587 | 0.628
Tth = §for 7y = 1.4 .540 .622 .663

The variation of Tgn obtained by a very simple reasoning is in very

good agreement with that given in table XIII and the curves of figure 20,
which were obtained from calculations as preclse and exact as possible.

In any case, the efficiencies calculated above concern the theoreti-
cal cycle chosen as model and it remains to be seen how this cycle can
be produced in practice and which then becomes its thermal efficiency.

29. Realization of the theoretical cycle

The different methods concelvable can be grouped in two classes:

(a) Integral cycle, in which all elements of the air-fuel mixture
go through the same cycle. - In this case, the products of combustion
must transfer part of their effective expansion energy, necessary to
drive the compressor, to a driving mechanism. This is the complement
of the energy of the total expansion vhich is expressed by the increase
in kinetic energy of the active bodies at the rocket outlet, whence the
propulsive reaction of the latter results. In this integral cycle, the
engine and the compressor may, themselves, be of the reciprocating, the
piston, or rotatory type (turbomachines). '

(b) Divided cycle. - In this case, the engine driving the compres-
sor of the rocket consumes a combustible mixture which is subjected in
the said engine to a more or less different cycle from that which the
mixture, intended for the rocket itself, undergoes. In this case, the
engine can operate with combustion at constant pressure or constant
volume, whether it is of the reciprocating or of the rotary type.

Its exhaust can be made direct, without appreciable propulsive
effect as for the usual airplane engines, or else be combined with that
of the rocket, the corresponding two jets forming a more or less homo-
geneous nmixture. No attempt is made to study the various combinations
in detail; only the elementary system corresponding to the engine with
exhaust independent and without appreciable propulsive effect is analyzed.
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30. Thermal efficiency of the rocket realizing the integral cycle

The subsequent study is concerned with the case where the engine
"isof the piston type and that where it is of the turbine type.

(A) Case of piston-type engine.- In this case it is logical to
perform the function of the compressor in the engine. In short, the
engine then is like the classical internal-combustion ‘engine of the
Diesel type. It only differs from it by the fact that its expansion
is cut short and its exhasust regulated in such a way that it can pro-
duce no effective energy at the outside; the motive energy of the expan-
sion rigorously balances the resistant energies, the most important of
which is that of the preliminary compression of the air.

Different designs may be visualized. If the exhaust is at atmos-
pheric pressure (fig. 21), the expansion must be very short-and the
engine compressor necessarily with uneven strokes, if of the four-
stoke cycle type. Thus it will seem preferable to resort to two-stroke
cycle operation with scavenging in one direction, and scavenging air
reservoir upstream. Besldes, the exhaust is accompanied by impulses or
pulsations as in the conventional engines and this fact gives the
exhaust of the rocket a periodic behavior, while vitiating the effi-
ciency of its nozzle. When, to avoid this draw-back, the exhaust of
the engine compressor 1s effected at rigorously constant pressure,
recourse must be had to an engine operating on the principle of the
diagram of figure 22. The two-stroke cycle must then be abandoned in
favor of a more complicated system of distribution.

It will be noted that it is also possible to effect a cycle such
as that of figure 22 by means of two cylinders with transfusion from
one to amother, each being able to operate at two strokes and the whole
forming the equivalent of a single four-stroke cylinder.

Whatever these variants may be, the study of which must be very
carefully carried out if an engine of this type is to be realized, an
attempt is made to define the thermal efficiency that may be obtained
in a rocket with an engine operating according to the cycle illustrated
in figure 22.

The visualized engine compressor, is, like any other heat engine,
subject to losses due to clearance, to stratification, to the walls, to
incomplete combustion etc. Its actual operation is compared with a
fictitious operation involving :

(a) An irreversible adiabatic compression of pure air with a com-
pression efficliency p; and which absorbs, in consequence, a real
energy Cg' = —a/pa (all calculations being referred to the consump-

tion of 1 kg of fuel, that is, per unit of weight rather than mass in
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the M.K.S. system (table XIII)). The temperature of the mixture at the
end of compression, that is, at pressure p. = A.Pg, is then raised

to Tp' instead of TL(Tp' > Tp);

(b) An irreversible and incomplete adiabatic compression at con-
stant pressure, releasing but the fraction (1 - 1) of the heat value L.
The corresponding loss 1(0 < 1 <1) totals, fictitiously, the effect
of the losses due to the incomplete combustion and to the wall effect
in the real engine.

(c) An irreversible adiabatic expansion accomplished with an
expansion efficiency pg' and furnishing an effective energy equal to
the energy Cg,' sabsorbed by the compression. The final pressure

Pq' = AM3pg of this partial or primary expansion is, therefore, deter-
mined by the condition that the reversible adiabatic expansion from p.
to pg' supply a theoretical energy equal to C,'/pg' = Ca/Pgpg'- The

actual temperature Tg' at the end of the expansion is then easily
computed by writing that the fraction (1 - pg') of the energy of the
theoretical expansion is equal to the temperature rise of the gases at
constant pressure, to the temperature Tg' (corresponding to the per-
fect expansion), and to the desired temperature Tg' (corresponding to
the real expansion).

The conditions of the gases supplied by the engine to the nozzle-
of the rocket, following their primary expansion in the engine are
(pd‘, Td'). Then they experience a secondary expansion from pg' to
Pg in the nozzle of the rocket, with an expansion efficiency pog" in
respect to the reversible expansion, which supplies an energy Cgq". The
real expansion produces, therefore, the energy Cq" = pg" X Cq" and
raises the expanded gases to the final rocket exhaust temperature T,.

The thermal efficiency m4pn' of the true rocket to be evaluated is,
by definition, equal to Cq"/L. when the air is trapped upstream in the
state (pa, Ta) without appreciable kinetic energy.

The calculation was carried out by this method for two widely
varying values of excess air o in the mixture, nsmely:

a =0 or exact mixture (limiting case)

a = 3 or mixture much diluted, which undoubtedly is of little
advantage because both the bulk and the weight per horsepower of the
system become prohibitive.

In this calculation, the fairly high value of Pg = Pg = 0.90 was

uniformly adopted for the efficiency of compression and expansion in
the reciprocating engine, which takes account of the good efficiency of



the piston engine for the high pressures at compression or adiabatic expansion. For the
fictitious loss 1, the high value 1 = 0.20 was chosen for the exact mixture (a = 0) because .
of the high temperatures of the cycle which call for intensive cooling of the walls and the
pistons, and the low value 1 = 0.10 for the very diluted mixture (o = 3) by reason of the much
lower temperatures of the cycle. For the efficiency of expansion in the rocket nozzle, the
value pg" = 0.95 was adopted. Lastly, the outside temperature is assumed to be standard, that
. 0

is, Tq = 273 + 15 = 288". R .

The results of the calculation are given in table XIV.

_ Table XIV

Tp' | Te' | Ca' | Ta' | Ta' |, , : Ca"| cq" | T o
(aeg)| (aee)| (cal)| (aeg) | (acg) [*d = Pa'/Pal (cal)| (cal)| (aeg) |MB' = gd;/L

Strict |Me = 15| 661 |2,48911 377|2,209|2,237 8.16 |4,150| 3,940| 1,476 0-3”22
ziztgf? < 30 | 803 |2,566|1,835(2,196|2,233 13.45 |4,857| 4,705 1,331 -409
P=0200 a5 | 903 |2,602(2,202(2,180(2,234 |  17.80 |5,251| 4 987|1,256 433
Mixture (Ac = 15| 661 |1,31L4]5,508| 931| 971 3.85 | 4,750 4,508 679 +392
diluted < 30| 803 |1,k277,3k0| 922| 9Th| - 5.35 |5,385/5,110( 643 b
_%:(3)-}10\ 45 | 903 |1,514/8,808| 911| 973 6.015 |5,732|5,445 621 | .43

6521 WI VOVN

L9
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The vaeriation of mnp as function of Ae is represented by the

curves in figure 23, along with the efficlency mny)p of the corre-
sponding theoretical cycle for comparison. The diagram shows the
marked drop in efficiency of the actual compared to the theoretical
system serving as model. This drop averages about 25 percent for the
chosen examples and assumptions.

The conclusion-is that, with an excess of air ranging between O
and 300 percent (or & between 15 and 60) and a compression ratio Ac
between 15 and 45, a system of the reciprocating type in question should
be able to develop a thermal efficiency n4p,' of the order of 0.4%0,
probably ranging between 0.37 and 0.43.

Up to now the energy of the compression had been considered as
being effected by starting from an initial state where the air to be
compressed is largely devoid of speed with respect to the engine, that
is, by assuming the speed V to be relatively low. If the speed V
is very substantial, the air trapped by the compressor is, once its
speed is gone, in a state where its compression is increased and where,
in consequence, a part of the total compression A.. is already realized.
The energy required from the engine is thus diminished and the kinetic
energy developed by the gases in the expansion nozzle is raised, but it
is eagsy to see that this increase corresponds to the initial kinetic
energy of the air which is slowed down before the compressor, the
efficiency of the various compressions and expansion being, however,
taken into account. Upstream from the compressor is the air inlet
which captures the free alr and operates as diffuser, with the com-
paratively mediocre efficiency of compression characteristic of
diffusers, in general. The efficiency mn4p' 1ndicated in table XIV
is then subject to a certain reduction.

This remark implies that, when V becomes appreciable, (higher
than 150 - 200 m/sec for example), the reciprocating compressor of the
system considered above loses part of the advantages which justify its
fundamental aptitude for obtaining high compression with reduced losses.

_ (B) The case where the engine is a turbomachine.- In this case, it
is logical to combine the turbine with a compressor that is also
rotatory, that is, a turbocompressor.

Visualize such a system which represents a turbine with balanced
internal combustion, hence, produces no effective energy on its shaft.
The obligation to operate with fairly low temperatures on the buckets
of the compressor and of the turbine results in limiting the compres-
sion ratio A, and utilizing a considerable excess of air. In addi-
tion, the first rotor of the turbine must be installed, during the
expansion of the burnt gases, at a sufficiently low pressure.
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On the assumption that speed V is not too high so that the

" kinetic energy of the air upstream from the compressor can be neglected

with respect to the theoretical energy Cg of the compression to which
it 1is subjected, the compressor of efficiency pgq (on the connecting
shaft with the motive turbine) absorbs an energy Ca' = Cq/pa, the
energy that should be furnished to it by the motive turbine.

Let (Cq represent the (theoretical) energy of the perfect and
total expansion of the burnt gases after combustion at degree (1 - 1),
that is, from the conditions (pc, Tc'). Let pg' denote the specific

efficiency of the turbine. The latter supplies a real emergy Cg' = Cg'
and takes, at complete expansion, & part Cgq' = Cg' /Dd of the energy

Ce of this ideal expansion, The complement Cg" = Cq - Cg' (the

temperature rise of the gases at the outlet of the real turbine with

respect to the ideal expansion being disregarded) is available for the
nozzle of the rocket and the latter transforms it, with a proper effi-
ciency pg" into kinetic exhaust energy Cgq" = pg"C4q". Of course, in

the foregoing the compressor, the turbine, and nozzle of the rocket are
assumed to be actually adiabatic. In fact, the heat losses of such
devices by conduction and radiation should be very small in the system
at the low temperatures visualized and, therefore, can be disregarded.
The real thermal efficiency to be computed is then

Cy! p.r C
=4 e —a
n‘th' R T [c—-d - papd|:] (92)

c> @and a« are fixed, C;, and C43 are defined and the pre-

ceding formula shows that 14,' 1s so much higher as the turbine effi-
ciency pg' 1tself is higher. However, it is expedient to note that,
in the corresponding energy loss (1 - ok | ') through the turbine, a frac-
tion ky (0O < ky < 1) corresponds to the loss by the remaining kinetic
energy whlle the complementary fraction (L - ky) corresponds to the
other losses (internal and external) of the turbine.

When pg,A

For the rocket, the kinetic energy of the gases at the turbine
exit, that is, the quantity [%v(l - pd')EAi] is directly usable in the
rocket nozzle and should be added to the energy Ed".

On this basis, formula (92) is more accurately expressed by

"

Pa g n 1\0at
71Ca" + k(1 - pa')Cq

Pg _ga
2ics - [1- w1 - ea)] P (93)

ﬂth

I
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Accordingly, with Pys Mes and o fixed, it is seen that the

maximum of My, corresponds to the maximum of the quantity'

P, : :
_ d
r = 1 - kv(l - pd_‘) (9}4')

For a turbine of the chosen type, pg' and kg, and, consequently r,
depend upon the head h (that is, the pressure level of the turbine
with respecﬁ to the pressure at start p.) and upon the turbine speed
(that is, in ratio w of its peripheral speed to the theoretical speed
of the fluid due to the head h).

Within the range of the variables h and w, the gquantity r has
a certain maximum which does not necessarily correspond to the same con-
ditions (hp, wg) as the maximum of pg' considered alone. Theoreti-
cally, this is due to the effect of external losses, because, if only
the internal losses are considered, the maximum of r corresponds
almost rigorously to the minimum of the loss by the remaining speed.
These are the conditions that should prevail when, however, the optimum
speed ratio wg of the turbine thus defined is practically realizable.

For the approximate evaluation of 14y' wunder consideration, it
is simply stated that quantity r 1is given a value slightly higher
than that of the efficiency pg' of a good turbine.

Reverting to the example of the theoretical cycle corresponding to
table XIV, in order to obtain the fairly low temperatures which the
machine requires, conslder the case o = 3, that is, a dilution of the
mixture that can be exceeded only at the expense of increased, perhaps
excessive, bulk and weight of the system.

Supposing the total combustion is (1 = 0), as it can be realized
in a system of this type, and the values of A, are limited to between
10 and 15 which actually are at the limit of the range of application
of turbocompressors. Such devices are ordinarily designed for quasi-
isothermal operation and, as such, compared to the ideal isothermal com-
pressor by means of an efficiency pi, completely different from pg.

In a study of the internal combustion turbine cited elsewhere, it had
been shown that it was advisable to adopt the principle of adiabatic
compression and to design the compressors in consequence. The data
available at the present time do not permit an evaluation of the effi-
ciency pg (with respect to the ideal adiabatic) that may be hoped for
from such compressors. Still, it seems safe to concede that a value of
the order of 0.75 for a compression ratio of the order of 10 could be
obtained. The consistent progress with turbomachines which helps to
speed up the arrival of the internal combustion turbine will undoubtedly
bring efficiencies of the order of 0.80 to 0.85 in the very near future.
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To maintain the margin of possible progress, pg 1is given the hypothei-
~ cal values 0.7, 0.8, O, 9. From this follow for Ac = 10 and A = 15
the characterlstlcs given in table XvV. :

Table XV

Real Cycle at Constant Pressure (¢ = 3, T, = 288°)

A Pa Ty Tc! -jga' = ga/pa Cq
(deg) (deg) (cal) (cal)

10 0.9 577 1,298 4 J060 9,298
.8 611 1,328 L 568 9,522
T 657 1,368 5 220 9,802

15 .9 661 1,372 5,291 11,027
.8 T07 1 ull 5,952 11,362
7 766 1 462 6,803 11,807

So, quantity r characterizing the utilization of the turbine is given
the values 0.75 and 0.85, which apparently ought to include the cases
practically obtainable without abnormal difficulties. Formula (94)

then can be used to compute the desired n¢y'. Table XVI gives the data
of this calculation which was made on the assumption of the expansion
nozzle efficiency equal to pg" = 0.95.

Table XVI
Thermal Efficiency of the True Turborocket

(a, = 3, T& = 2880, Qd" = 0.95)

Xc Pg r T]th
10 0.9 0.85 0.372

™ . 3195

.8 85 L3415

75 .2825

T 85 . 3015

15 .234

15 .9 ' - .85 _ .396

75 .3275

8 85 .3595

T .2825

7 .85 .31k

75 .2255
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These data are represented in the diagram of figure 2.L.
"It is evident from this diagrsm that:

(1) Within the range of p,, pg', and i, in question, nyy'
ranges between 0.22 and 0.40.

(2) At equality of the apparent turbine efficiency r (between
0.85 and 0.75 by assumption), especially if the latter differs little
from 0.75 and from the compressor efficiency Pg» there is little reason
to push the compression A, beyond 10, especially as such an increase
would undoubtedly lower the anticipated compressor efficiency pg4.

(3) The value of r, for fixed A. and pg has a marked effect
on the thermal efficiency n¢n' of the complete system. This apparent
thermal efficiency of the turbine should therefore have the highest
possible value.

To illustrate: teke a case that is easily realizable, that is,
defined by A, = 10; pg = 0.75. It is seen that mn¢p' will range
between 0.259 and 0.322 when r itself ranges between 0.75 and 0.85.

Consider, for example, a specific turbine efficiency equal to 0.75
and see whether it is practically feasible and what value r reaches.
In this instance, Cp' = 4878 cal; Ty = 633%; T_' = 1347%; Cq = 96L5 cal.

In order to reduce the temperature at the turbine buckets to a
minimum, it is expedient to use a single acting, single rotor turbine.

The specific turbine efficiency pg' being assumed equal to 0.75,
this turbine should utilize the part of the expansion corresponding to
a theoretical energy for perfect expansion, equal to ga'/pd' = 6505 cal.

This preliminary expansion ranges between the upstream pressure

P, = 10p, and the intermediary pressure Py’ = 2;71pa, which is that
which must prevail in the junction between the distributor and the tur-
bine wheel, '

If this primary expansion is by reversible adiabatic, the final
(absolute) temperature of the burnt gases is 945° (or 6726 C). Im fact,
the temperature of the gases back of the buckets is slightly higher by
reason of the irreversibility of the true expansion.

The theoretical speed due to the head feeding the turbine is
W = 953 m/sec. With 1 denoting the slope of the buckets of the dis-
tributor, un and A the throttiing coefficients in the distributor and
in the wheel, and U +the peripheral speed of the rotor, the internal
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efficiency pj (which disregards the external losses of the turbine)
of the single rotor, single action turbine is given by the formula '

pp = 2(1 +2) g cos 1 - F) (95)
The values for a good impulse turbine opéréting at total injection are
i=15° p=0.98 =0.87

Conceding that the outside losses are reduced to T percent of the
theoretical horsepower of the turbine, it is necessary, in order to
obtain the specific efficiency pg' admitted, a priori, equal to 0.75,
that the internal efficiency p; reach 0.82. Formula (95) shows
that, in order to obtain this result, the ratio U/W must have a value
of 0.403 and that the peripheral speed U of the rotor must be
0.403 x 953 = 384 m/sec.

A quick calculation indicates that the quantity k, in the
expression (94) of the coefficient r, for the impulse turbine, is
given by the formula

2 .
k(L - pg') = (1 + x)E(%) + 222 - 2np cos 1 (1 + X)% (96)

For the example in question, this formula gives the value
k(1 - pg') = 0.048 and formule (94) gives r = 0.789.

Lastly, for the whole system, characterized by A; = 10; a = 3;

Py = 0.75; pd' = 0.75; r = 0.789; pd" = 0,95 the thermal efficiency

nth' reaches the value 0.285, with due allowance for the partial
recovery of the kinetic energy left in the turbine outlet in the nozzle
of the rocket.

This efficiency is of the order of that of the best aircraft
engines of today and is not obtained, except with a system operating at
relatively low pressures and temperatures with respect to those of the
usual intermnal combustion engines.

It would be improved comnsiderably if the p, and pg' of the
turbomachines employed could be made superior to the efficilencies
admitted in the foregoing example. In a similar case, it is found that
it is advisable to force the dilution (o« > 3) of the combustible mix-
ture and the compression (Ae >10) which precedes the combustion, simul-
taneously. It is true that the above gas turbine ralses an appreciable
difficulty in the sense that its peripheral speed must attain 384 m/ sec
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- at a gas temperature in contact with the buckets of the order of 6720-0.
But it is proper to note that the severity of these conditions, com-
parable to those in which some exhaust gas turbines used &as super-
chargers actually operate, is considerably ameliorated by either forcing
the excess air of 300 percent (o = 3) admitted in the previous example,
or else contemplating the operation of the system at sufficiently high
altitude because the decrease in Tg then reduces all temperatures of
the cycle in a roughly proportional manner.

Note.- All of the above calculations assume, as for the reciprocal
engine considered elsewhere, the compression of the initial kinetic
energy of the air to be slight or quasi-negligible at entry in the com-
pressor compared to the energy required from the compressor, as is the
case when the speed V is below 150 to 200 m/sec, for example.

_ In the case of the turborocket with very high speed, the obtain-
able thermal efficiency m¢y' 1s increased, all other things (c, Acs
Pgs Pg's and pd") being equal.

31. Thermal efficiency of the rocket by divided cycle

In this system, the air compressor that supplies the combustion
chamber of the rocket is driven by an engine consuming, for its own
operation and in independent manner, a certain portion of the fuel.

It is assumed that this engine does not contribute by its exhaust to
the propulsive reaction developed by the exhaust of the rocket itself.
Individually, engine and compressor may be of any reciprocating or
rotary type.

The fuel consumed by the rocket is, as before, per 1 kg.

Cq' = the real energy absorbed by the compressor, of the
efficiency Pg

Cq = the theoretical energy of expansion of the combustion gases
in the rocket

Cq' = the corresponding real energy converted to kinetic energy
in the nozzle, the expansion coefficient of which is P4

With my denoting the effective thermal efficiency of the engine (at
the compressor drive shaft), the latter should produce ancegergy equal
~g,

to Cgy and consume, to this effect, the amount of fuel L’ C
m

C,' and

L Dbeing expressed in cal/kg of fuel utilized, which were assumed to be
identical for the rocket and the auxiliary engine.
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The useful effect of the whole is represented by the kinetic
energy developed by the gases in the nozzle of the rocket, or
gd' = pdgd. To obtain the thermal efficiency of the whole, it should

be referred to the heat value of the total amount of fuel consumed
(1 + Cy'/ngls). '

The desired efficiency is then given by the simple formula

e = TmPafa mPaPafa
th ~ v T
Ml * Gy Ca * MyPal

(97)

For the engine, an efficiency ny = 0.27 may be assumed; this
corresponds to engines consuming around 220 gallons of gasoline
per hp/hr.

For the efficiency py of the expansion nozzle, the value of
Pg = 0.95 1is assumed.

The provision for the rocket itself still is the cycle with
isobaric combustion of the fuel mixture analyzed previously while
assuming the several parts of the rocket (compressor, combustion cham-
ber, nozzle) practically adiabatic. Here, also, it is advisable to
limit the temperatures attained in the compressor and in the combustion
chamber.

It is further assumed that o = 3, and for this 300-percent excess
of air in the mixture consumed by the rocket, a compression ratio i,
ranging between 10 and 15 is visualized. Lastly, the combustion is
regarded as being practically complete, while the surrounding tempera-
ture is Ty = 273 + 15 = 288°,

For the compressor efficiency p, (with respect to the adiabatic),
. values ranging between 0.7 and 0.9 are considered, since this range
appears to include the efficiencies which good compressors with pistons
or wheels can obtain.

On these premises, the obtainable n4+y' reaches, according to -
the values assumed for A. and pgy, the values given in table XVII
and plotted in figure 25.

“
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Table XVII

Rocket with Divided Cycle

(o = 3; Ty = 288°% 1y = 0.27; pg = 0.95;
L = 11,500 cal/kg)

Tp' Tc' G Ca' Ca '
o | Pa | (aeg) | (deg) | (ca1) | (ca1) | (car) | Men
10 | 0.9 577 1,298 | 3,652 | 4,060 9,298 | 0,332
.8 611 1,328 4,568 9,522 ,3175
i 657 1,368 5,220 9,802 »302
15 .9 661 | 1,372 | 4,7555| 5,291 11 027 ,336
.8 707 5,952 5,952 | 11,362 ,321
T 766 6,803 6,803 | 11,807 ,305

From figure 25, it is evident that

(1) within the stipulated range of Py» Pgr 2nd Ao, the effeciency

iy lies between 0.30 and 0.3%4

(2) At equal values of Py 1t serves no useful purpose to raise
the compression A. above 10 especially as such an increase would
undoubtedly lower the efficiency pg to be attained by the compressor

It is essential to note that, in this instance, a thermal effi-
ciency superior to that of the best aircraft engine is obtained. And
this result is achieved here without encountering any difficulty as
regards the realization of the expansion of the burnt gases, which is
effected entirely in a nozzle without interposition of paddle wheels,

As before, it is well to remember the assumption that the kinetic
energy of the air before entering the compressor was almost negligible
compared to the energy which the compressor must supply. Therefore,
the computed efficiencies apply only to rockets at speeds below
"150 - 200 m/sec. For high-speed rockets, the initial kinetic energy
of the air which, moreover, permits obtaining a slightly improved ther-
mal efficiency mn¢p', must be taken into account. ®

32. Comparison of rockets with integral cycle and rockets with divided
cycle

From the foregoing study the following conclusions can be drawn:
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_ (1) The obtainable thermal efficiency N¢n' appears to range
between the following limits : .

'Engine—piston ;~-~vminimum.dilution 0.34 < Ty’ < 0.43
. compressor 4 (a0 = 0)
Rocket with : maximum dilution 0.39 <7 . ' < O0.47.
integral <Turborocket L (CL = 3) g th
cycle (expansion )
PPl EEE normal dilution 0.22 <n, ' <0.40
\ turbocompressor ) 1; (¢ = 3) th

/
Separate recipro-

Rocket with cating engine- normal dilution
divided 4 vane or piston (¢ = 3) 0.30 <:nth' < 0.33
cycle type :
L compre ssor

(2) The engine-piston compressor system producing the integral
cycle appears likely to develop the highest thermal efficiency. The
latter increases constantly with increased dilution of the combustible
mixture, but its drawback of size and weight appears to favor
turbomachines.

(3) With greatly diluted combustible mixture, the turborocket sur-
passes the rocket with integral cycle, when the efficiency of the expan-
sion turbine and of the turbocompressor which form it, is high enough.
The realization of the first necessitates, it is true, the development
of turbines operating at speeds and temperatures which are still a
little above those of current practice, but the difficulties involved
cannot be regarded as prohibitive.

(4) The rocket with divided cycle and greatly diluted mixture pre-
sents, in compensation for its correspondingly low efficiency, esti-
mated at about 0.30 to 0.33, the particular advantage of being attain-
able with the least difficulty by using a standard reciprocating engine,
a suitable compressor (compression of the order of 10), and combustion
* chambers and nozzles which, operating at relatively moderate tempera-
tures, are comparatively easy to obtain.

33. Study of two typical examples of true liquid-fuel rockets

Case 1l.- A so-called rocket A, with engine and plston compressor,
and a dilution of combustible. mixture limited to the value o = 0.5
(50 percent excess of air) so as to keep size and weight from becoming
excessive. On the other hand, in this-type of system a fairly high
compression of Ac = 40 to 45 is admitted in order to improve the
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‘efficiency as much as possible and to remain within the neighborhood
of the operating conditions of Diesel engines. The efficiency 1n:)'
may be assumed equal to O.hk, '

Case 2.~ A so-called turborocket B, for which is chosen the case
of relatively easy realization, already discussed (in 30, B) and for
which

a=3 A, =10 pg =0.75 pg'=0.75 pd" = 0.95

For this rocket with low pressures and temperatures, the probable ther~
mal efficiency ntn' has been estimated equal to 0.285. To insure
greater accuracy, it 1s advisable to take the effect of the kinetic
energy of the air before entering the compressor of the rockets into
consideration. This initial energy is transformed in the orifice of
the compressor operating as diffuser, into lrreversible and adiabatic
compression energy of the air, the velocity of which is damped. The
diffuser efficiency with respect to the reversible adiabatic is gener-
ally mediocre and this efficlency is optimistically put at 0.75.

If a constant total compression ratio A, 1is maintained, the
damped kinetic energy before the compressor lowers the compression
energy which the latter must supply. The energy to be assumed at the
last expansion of the burnt gases to operate the compressor is equally
reduced and the complement of the expansion furnishes an accrued final
kinetic energy at the rocket exit. The difference between the latter
and the initial kinetic energy referred to the heat value is a measure
of the thermal efficlency of the system.

The result, as is easily seem, is that, in the case of rocket A
and when considering the values assumed for the different efficiencies
of compression and expansion, the thermal efficiency decreases with the
speed V, the total ratio of compression A, being assumed constant.
The decrease is small. Besides, it can be avoided by increasing A,
for example, by maintaining a constant rate of volumetric compression
in the engine compressor, which actually facilitetes the design and use
of the system,

It is further assumed that the thermal efficiency 4 of rocket A
maintains the value O.44 when the speed increases.
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A first approximationlo 6f the variation of nth' with speed V
of rocket B is obtained by the following simple reasoning:

-On- the basis of the assumptions, the efficiency of compression in
the diffuser which precedes the turbocompressor is found to have the
same value (0.75) as the specific efficiency Pq of the compressor, the

latter efficiency being assumed estimated with a negligible kinetic
energy at induction (side of air intake operating as diffuser) as well
as at discharge (side of feed of combustion chambers of the rocket).
Consequently, whatever the contribution of effective energy absorbed by
the diffuser-compressor unit may be, this total energy remains constant
as long as the over-all ratio of the compression A. itself is constant.
By the same argument, the state of the cyclic fluids at the end of com-
pression undergoes no modification and the combustion takes place under
constant conditions.

Thus, if Wg is the corresponding kinetic energy of the captured
air, it is seen that, with respect to the case where it is zero or
negligible, the motive energy required by the compressor from the tur-
bine which drives it, is reduced to Wg. This turbine utilizes then
but a small fraction of the theoretical expansion energy (4, leaving
the amount Wg/pg' of this energy. The expansion nozzle utilizes this
supplementary energy of the theoretical expansion with the expansion
efficiency pg".

Lastly, it is seen that the final kinetic energy increases to
pq"'Wa/pq', when the initial kinetic energy increases to Wg. The ther-
mal efficiency n¢n' of the total thermodynamic cycle being, according
to formula (4) and for the system in question, the ratio of the differ-
ence in the initial and final kinetic energy of the active bodies to the
heat value L, it is seen immediately that the increase in 1n4,' with

speed V is
W pd_"
Agp' = _ﬂ%&_d—' B J (58)

107ne approximation underestimates the variation of Mtp' system-

atically, because first, it disregards the partial recovery, in the
nozzle of the rocket, of the loss due to residual speed of the turbine
situated upstream, and second, it likewise neglects the temperature rise
of the gases at the turbine exit, which is due to the losses of the real
cycle in the turbine. This rise affords a partial recovery of the said
losses during a subsequent expansion and, notably, in the nozzle of the
rocket, This effect, of secondary importance, has been neglected in all
the calculations of the thermal efficiency of the cycles with fractional
expansion.
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This variation has the. prefix of an increment, because the effi-
ciency of the expansion turbine (pg' = 0.75) is less than that of the
' ejection nozzle of the rocket (pg" = 0.95). Besides, this increment is
quite small as indicated in the following tabulation of the n¢n' -
values computed for rockets A and B at various speeds:

V =
(m/sec) 0 100 200 300 400 500
Nep ' = LO'285 0.2866 | 0.2915 | 0.2997 | 0.3101 l 0.3258

These values are applied hereafter.

The over-all efficiency 7 of rocket A and B follows from the
general formula (82), in which &Y is henceforth the only variable.

Thus, with Rey kerosene we get:

Rocket A: a = 22.02; L = 11,500 cal/kg = 48,000,000
(M.K.S. system); nyp' = O bk

Rocket B: a = 58.72; L = 48,000,000;
Nty ' = values of the preceding table

With these data, formula (82) gives the values indicated in

1
g
table XVIII and plotted in figure 26.

Table XVIIX

g Values for Rockets A and B

V =
(w/sec) 0 100 200 300 400 500
Rocket A: ng = | O 0.0605 | 0.113 | 0.1575 | 0.197 0.231
Rocket B: 75 = | O | 0.0735 | 0.129 | 0.1725 | 0.2085 0.250 |

The examination of figure 26 shows that

(1) The turborocket B has a better over-all efficiency than
rocket A .
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(2) This superiority is, however, quite small; since it varies in
velue from 14 to 4 percent when V varies between 200 to 500 m/sec

(3) Rocket B, the most advantageous, does not begin to be compa-

~ rable (ng = 0.17) to the engine-propeller system until the speed of
1050 km/h is reached and then it certainly becomes superior to the best
- system of this type (ng = 0.225) when V exceeds 1600 ¥m/h

Such is the principal conclusion reached from the study of true
rockets using an ordinary fuel such as kerosene. This conclusion is in
accord with that obtained in the study of solid-fuel rockets. On the
other hand, the kerosene rocket, at equal over-all efficiency, has a
specific fuel consumption identical with that of an aircraft engine
with gasoline or kerosene driving a propeller. This holds for the
equivalence of heat values of the utilized fuels and gives a primordial
advantage to the kerosene rocket over the explosive rocket. One of the
most essential means of raising the over-all efficiency of the kerosene
rocket consists, as for the explosive rocket, in raising its volume
without unduly lowering its thermal efficiency.

Chapter II - Liquid-Fuel Rocket with Thrust Augmentation
34. Principle and operation

The liquid-fuel rocket with thrust augmentation differs from the
corresponding plain rocket only by the addition of a thrust augmenter,
as already indicated in the study of the explosive rocket with thrust
augmentation.

The principle and the mode of operation is the same as for the
explosive rocket. However, the thrust equations and the efficiencies
are modified by reason of the corresponding air consumption a of the
rocket proper.

35. Equations of operation of the rocket with thrust augmentation

With a' as the mass of air captured by the thrust augmenter per
unit mass of fuel consumed by the rocket with thrust augmentation

n=a'/a ) - (99)
The ratio p represents the ajir volume ratio (a') trapped by

augmenter and (a) consumed by the rocket, the volume of fuel being .
negligible in comparison to the latter. To express the speed of
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exhaust we, thrust T, intensity of thrust t = T/Se, and finally the
efficiencies 17, and ng, of the rocket with thrust augmentation, the

(2) in formulas (83) to (88) is replaced by (a + a'), hence, by a(l + u),
after which

- |
Ye _ Jl + —0thd (100)
a(l + p)

2n14
T =ma(l + u)Vv i epramih 1 (101)
{ 2n,.q
a(l + u) th
= 1+ -1 102
T]P Nypd ail + u; . ( )
21,9
_all + ) th _
g = -———a————E]l MY Caran 1 (103)

In these equations q always designates the parameter L/V2
and 7n4p represents the thermal efficiency of the complete rocket-
augmenter unit.

The calculation of this thermal efficiency 14} 1is predicated on
the knowledge of the exhaust temperature of the assumedly homogeneous
mixture ejected by the thrust augmenter. This involves the use of the
equations of the operation of gas augmenters, that is to say, the equa-
tions established for the explosive rocket with thrust augmentation,
which are to be used in the following.

36. Comparison with the true rocket

To evaluate the importance of the rocket with thrust augmentation,
it is necessary and sufficient to compare it with the corresponding
true rocket, that is, the true rocket that includes an identical gener-
ator of burnt gas and operates in the same condltions, but which, in
addition, 1s fitted with a more or less different expansion nozzle,
since in the case of the true rocket, this nozzle expands the burnt
gases directly up to the surrounding pressure.

This nozzle will be, besides, identical if the mixer of the rocket
with thrust augmentation operates at a pressure Py equal to the out-
side or atmospheric pressure pg, that is, if the particular case
involves the rocket with thrust augmentation characterized by

Al = Pl/Pa =1,
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The study is restricted to a comparison of the over-all effi-
clency 1ng of the rocket with thrust augmentation and the efficiency
ﬂg" of the_corresponding true rocket, the corresponding quantities of
the latter being distinguished by a double accent.

It will be remembered that

Co_a(l +p) d 2nghd _ . N
T g (W ramew Tt (1ob)
and
- E{ZL 2“th 4 :] o (88)
Ng =g
also that
Mgnd  Ngpl Tth' '@ Ngp' L
Q = a = 2 W = a = 2 (105)
av aV

It is a question of studying the ratio

1 1+ T EQ -1
X =8 = (1 +4p) £ (106)

e Jl +2Q" -1

which depends only on Q, Q", and u.

On the other hand, it is easily verified that by reason of the
energy losses in the mixer of the ‘augmenter (K >0), Q must be smaller
than Q"

Q< Q" (107)

Equation (106) is the cause of the superiority of the rocket with
thrust augmentation over the corresponding true rocket, that is, for
which X > 1; it is sufficient that

Q" + ulyi + 2g" - i]

Q>QQ=' 1+

(108)
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The two inequalities are compatible because obviously Qo < Q".
- Starting from a given true rocket, its over-all efficiency can therefore
be improved by the addition of a suitably designed thrust augmenter when
‘the operating conditions Aq = Pl/Pa) no= a'/a, can be realized in the

mixer of the thrust augmenter so that the ratio Q = Q" X Tlth/“th"

becomes greater than Qp.

In order to determine whether this realization is effectively pos-
sible, it 1s necessary to know the effective variation of the coeffi-
cient k as function of the conditions at the inlet of the mixer for
properly designed gas augmenters. Insufficient knowledge on this sub-
Ject makes the subsequent study based on assumption obligatory. Thus
the procedure to be followed is the same as for the solid-fuel rocket,
the study is limited to the specific case of the thrust augmenter
characterized by a mixer at atmospheric pressure (A] = 1). For the
eventual effect of a modification of the pressure in the mixer (A} # 1),
the reader is referred to the considerations developed in article 20.

37. Specific case - mixer at atmospheric pressure

It should be noted that the formulas used in article 19 to link
Mth tO nth" are not directly applicable to the present case by rea-
son of the difference in the thermodynamic cycles which concern, on the
one hand, the solid-fuel rocket and, on the other, the generator of the
rocket under consideration.

But, in the specific case of A} =1, it is easy to link 74y
to n¢p" so that it can be indicated.

By definition, the thermal efficiency of the rocket with thrust
augmentation, assumedly adiabatic, is

1 Cp(Te - T
Mep = 1 - a(l + p) Lm( e a) (109)

Cym designating the mean value between Te and Ty of the specific
heat of the gases delivered by the augmenter, the mean specific heat
which is equally assumed valid for the burnt gases up to the exhaust
temperature Te" of the true reference rocket.

This epproximation is much more legitimate than in the case of the
explosive rocket, because in this instance the burnt gases contain a
considerable proportion of air and the exhaust temperatures are
relatively low.
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In these conditions the efficiency nty" of the true reference
rocket is, by definition and since the rocket is always assumed
adiabatic:

_ aCp(Te" - Ta)
Tth - L

On the other hand, the application of the principle of the con-
servation of energy to the mixer of the thrust augmenter tube, also
assumed adiabatic, results in

w2 w2 o
" e e v
aCpTe" + paCyTy - (1 + p)aGyTe = (1 + u)a 5~ -a 5 -ua 35

By definition of the coefficient k37 comprised between zero and
unity, which characterizes the kinetic energy losses in the mixer of
the thrust asugmenter, we get

2 2 2
(1 + pa Te | a Fe - ua XE = -kja KS:— + XE
e 2 " ReR T REITET TR

and lastly also

With dque regard to the preceding equations, T, can be computed, as
function of T.", p, and k7 and which entered in (109) finally gives

_ no_ " ua
Ttn = Men kl(”th * 2q_> (110)

Introducing this value in the expression (106) of X, the latter

~assumes for A3 = 1 the particular form

1+ p 1l +u
l V l + 2Q," - l .

. For a given true reference rocket, Q" is determined and the
coefficient k; (a particular value, for A} =1 of the coefficient
of the kinetic energy losses in the mixer) depends only on u.

" k (2Q" +u)
\]l + 2Q g
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The ratio X3 1s therefore a simple function of ¢ and, when the
function k31 1s known, it is readily ascertained when X1 exceeds
" unity and its maximum determlned

Conversely, since kj is actually an unknown function, it 1s pos-
sible to determine the 1limit which this coefficient must not exceed,
if X1 1is not to exceed unity.

Designating, as before, this limit, which depends only on Q" and
on p, by Ki its value, taken from (111) where X =1, is

ou 1+ Q" - VI ¥ 2q"

Ky = T +n n o+ 2qQ" (112)

Its mumerical value for different Q" and p 1s given in
table XIX and plotted in figure 27.

Table XIX
Values of the Function Kj(p) and its Maximum

for Different Values of Q"

Value of X; for: Meximum of Ki-
L =0 0.5 1 2 5 10 20 |Value{For u =
Q" = 2 0 [0.113[0.153|0.17110.142{0.099]0.061]0.171 2
5 0 1701 .24k ,298( .298[ .244{ .170| .28k4 3.162
10 0 .208| .306( .389| .ke7| .389| .306] .431 b, 47
50 0 2724 .45 .535] .650| .677| .650f .675| 10
100 0 2891 .431t .573] .706] .752] .751] .760| 1hk.1k

The maximum 1s reached at
2Q"

and has the value

' | -

(K a = |5 7 o (123)
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In order to appreciate the significance of the above numerical
values given to parameter Q", table XX and figure 28 indicate the
value of V(m/sec) corresponding to these values for the previously
specified type -of kerosene, where. a and -Mth have the extreme values
considered as comprising the practical range, namely:

a=15 and a="T5

]

1 "o o_
Teh 0.2 and 1n.," = 0.6

Table XX -

Speed V for Several Values of a, nip", and

Q" = '%h"L/aV2
Q," =2 5 10 50 100
_ 1 "= Q0.2 vV = 552 3,4.9 2’4‘7 110.3 78- 3
a =15 th 0.6 955 | 605 | 428 | 191 135
Ny = 0.2 | V=246 | 156 | 110 k9.3 35
a =175 0.6 Lbo6 | 270 | 191 85.5 | 60.5

In order to compute the practical possibilities of the rocket with
thrust augmentation, several specific examples a.v: analyzed.

Consider two cases of the true rocket corresponding to the practi-
cally extreme values of the dilution a and to the corresponding maxi-
mum thermal efficiency n¢p", that is, a = 20, ntp" = 0.5 and a = 75,

T]th" = 0.3.

Visualize, on the other hand, two values of the speed V identi-
cal to those considered previously for the explosive rocket with thrust
augmentation, namely: V = 112 m/sec, = 402 km/h, and
V = 224 m/sec = 804 km/h.

To these four particular cases taken for examples, there corre-
spond the following values of Q":

Q" =91.7 for a =20, mE" =0.5 V=112
Q" = 22.9 V = 224
Q" = 14,7 for a =175, 1" =0.3 V=112
Q" = 3.68 ' .V =224
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On plotting the values of k1 corresponding to the values 1, 1.5,
and 2 of the ratio X3 = ng/ng" against u, the values of k; for the

four cited Q" are those represented in table XXI and illustrated in
figures 29 to 32.

Table XXI

Values of kj(p) for Different Values of X3

=20 2 5 10 15 20

Q" =91.7|X] =1 0 0.56410.70L|0. T4l 0. 748 0. 741
1.5(-1.148{ .144| .459{ .586 | .623 | .635
2 [-2.72 | -.417! .146| .390 | .412 | .506
2.5 -4, 7k |-1.12 |-.235]| .159 | .296 | .361

Q" = 22.9|%; =1 0 0.476{0.561{0.556 |0.526 [0.490
1.5(-1.06 | -.057| .306{ .386 | .386 | .372
2 |-2.485] -.483{-.007{ .180 | .228 | .24l
Q" = 1h.7jX1 = 1 0 0.43210.493}0.469 {0.429 |0.393
1.5(-1.023] .019! .237} .296 | .292 | .277
2 1-2.39 | -.503]-.066] .099 | .1k1 | .152
Q" = 3.68(X; = 0 0.25410.2400.187 |0.149 {0.125

.5| -.88 -.108| .027| .0545) .0516| .ou4T5

The ratio X; obtainable by thrust augmentation according to
the p value given by its corresponding volume is contingent upon the
possibility of plotting on each of these diagrams the corresponding
k1() curve characterizing the real mixer of the rocket with the thrust
augmentation. As for the explosive rocket with thrust augmentation,
the curve kj(u) which characterizes the real thrust augmentation can
only be imagined.

In spite of the uncertainty of such speculation, it is assumed
that the curve in question can be represented, in figures 29 to 32, by
the curves Cy, Cp, C3, Cy, which are progressively toward the right to

allow for the fact that the difference in jet velocities at the mixer
entrance of the thrust augmenter decreases for each case.
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On these premises, it is seen that the maximum of ratio Xj
corresponds to the points M;, M,, M3, and M), for which

Mp:Q" = 9L.7 h=15.6 k; = 0.2 X; =2

Ms:Q" = 22.9 u = 6.3 k] =0.2 X7 = 1.77
M3:Q" = 1k.7 u=>5.5 ky = 0.1k X] = 1.71
Mj:Q" = 3.68 k= 3.9 k; = 0.07 X] = 1.37

These values of X7 are, it is repeated, purely hypotheticael and
probably optimistic. Nevertheless, they are utilized for illustrative
purpose.

They involve the following consequences for the four chosen
examples: (only the results of the calculations are given here.)

(1) Q" = 91.7.- The true rocket having a thermasl efficiency
nth" = 0.5, a propulsive efficiency np" = 0.137, and an over-all
efficiency of ﬂg = 0.0695; the eff1c1enc1es for the best rocket with
thrust augmentation and at a speed of 402 km/h will shift to

Nep = 0.396 | Tp = 0.346 ng = 2 X ng" = 0.137

(2) Q" = 22.9.- This case is the same as the one before except that
speed of propulsion, supposedly doubled, is 804 km/h.

The true rocket is characterized by:

nth" = 0.5 np" = 0.255 n." = 0.1275

and the best rocket with thrust augmentation by

= 0.386 = 0.58 = 1. " = 0.226
Mh 3 | p 585 g g 2
(3) Q" = 14.7.- The true rocket at 402 km/h speed is character-
ized by
"oo_ "no_ - "no_
Mgy, = 0-3 N, = 0.307 ng = 0.092

and the best rocket with thrust augmentation by

Ny = 0.250 np = 0.629 ng = 1.7 ng" = 0.157
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(4) Q" = 3.68.- This case is the same as case 3 except for the
propulsive velocity of 804 km/h. The true rocket is characterized by

nth" = 0.3 np" = 0.515° ng" = 0.1545
- and the best rocket with thrust augmentation by

Nty = 0.268 np = 0.792 Mg = 1.37 ng = 0.212

The foregoing data indicate that, if these assumptions can be
realized, the particular rocket with thrust augmentation considered
above (A = 1) is advantageous. It offers the possibility of lowering
the speed of propulsion beginning at which the propeller with direct
reaction gives an over-all efficiency comparable with that of the
engine-propeller system. The speed at which both systems are equivalent
is of the order of 500 to 800 km/h, depending upon the particular case.

Starting with a true rocket of lower thermal efficiency, the rocket

" with thrust augmentation thus offers the possibility of obtaining a pro-
peller whose efficiency exceeds that of a rocket with thrust augmentation
that corresponds to a true rocket of higher thermal efficiency, the speed
of propulsion remsining, of course, the same.

Thus at 402 km/h the rocket with thrust augmentation corresponding
to the ‘true rocket characterized by mntp" = 0.3 and a =75 (case 3)
will have an over-all efficiency of ng = 0.157, hence be superior to
that of the rocket with thrust augmentation corresponding to the true
rocket characterized by ntp" = 0.5 and a = 20 (case 1), an efficiency
that reaches only ng = 137.

S50, in the first of these cases, the rocket with thrust
augmentation is able to reach ntp = 0.25 for a total volume equal
to a(l +u) = 75(1 + 5.5) = 487, against nth =0.396 in the first
case, which is superior to the former, but with a volume of only
20(1 + 5.6) = 132. The increase in volume outweighs the decreasé in
thermal efficiency, that is, by the speed of eJjection of the gases at
the augmenter outlet.

Moreover, the whole problem of the rocket with augmentation hinges
on knowing whether this arrangement, which obviously lowers the thermal
efficiency with respect to the corresponding true rocket, will make it
possible to increase the total volume enough to improve the over-all
efficiency.

In this respect, the following problem may be put.
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Imagine a liquid-fuel rocket operating at constant pressure and at
a previously determined compression ratio. The efficiency of expansion
and compression being assumedly fixed, the thermgl efficlency of this
true - rocket depends upon the dllution a of the combustible mixture.
By progressively increasing the dilution, the efficiency is reduced and
Pinally nullified.

Instead of effecting the preliminary dilution of the combustion
gases by going through the cycle of the entire mixture in rocket, the
exhaust gases of the true rocket can be diluted by the air trapped by
a thrust sugmenter tube. 1In this case also the thermal efficiency of
the system, that is, of the rocket with thrust augmentation, is reduced.

From the point of view of over-all efficlency, it may be interesting
to find out if and in what conditions the extrinsic dilution is more
advantageous than the intrinsic.

38. Intrinsic and extrinsic dilution

The problem involved is simplified by the following approximetions.
The specific heat of air is compared to that of the burnt gases and
their variation with the temperature disregarded. This assumption is
so much more Jjustified as the dilutions involved are greater and the
temperatures are therefore lower.

Supposing that the expansion and compression nozzles, as well as .
the mixer of the thrust augmenter (which operates at atmospheric pres-
sure), are actually adiabatic, and that A 1s the ratio of the primary
compression.

Two rockets are considered: One consumes, per unit mass of fuel,
the air mass a 1in the true rocket and the mass pa captured by the
thrust augmenter; the other consumes the same total mass of air
a(l + p) and has no thrust augmenter.

The quantities of the second rocket are indicated by a triple

. accent and the corresponding gas phases (compared to air at constant
specific heat C) at induction, terminal compression, after combustion
snd completed expansion by the subscripts a, b, c, and d. Lastly,
assume that the combustion (effected in both cases at pressure Apg) is
complete.

It is a question of comparing the thermal efficiencies

Mg end Myt

of the rocket fitted with thrust augmenter and the pure rocket of the
same total volume.
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According to previous arguments, the efficiency of the rocket with
thrust augmentation is '

. .
Tth = Mh -5 (11%)

Nty denoting the thermsl efficiency of the corresponding true rocket
obtained by elimination of the thrust augmenter and (a@Qy) the amount of
heat equivalent to the energy of the viscosity and the friction in the
mixer of the thrust augmenter, & quantity referred to unit of mass of
fuel consumed. The preceding equation follows immediately from (61)
where Ap = 1.

1

The efficiency nth' can be put in the form

(T, - AT )L -2 - g, -
Ten" _ 2ot - 2, - % - % (115)

7—

n designating the coefficient characterizing the variation of

temperature in the irreversible adiabatic transformations, Q, and @4
denoting the quantities of heat equivelent to the energy of viscosity
and friction during compression and expansion in the rocket, quantities
referred to unit mass of air of the cycle.

On the other hand, the thermal efficiency n¢p''' of the second
true rocket with the same total volume as the rocket with thrust augmen-
tation, is put in the form

a(l + w)[C(T 1t - APLL)(L - M) - gpt - gt

' = 7 (116)
guantities Qg''' and Qgff' having the same significance as Qg
and Qg and quantity Qg ''' can also be didentified with Qm when

the compressors of the two rockets have the same efficlency with respect
to the reversible adisbatic compression: It is admitted here by

putting Q,''' = Q.

Next, the combustion temperatures Tc"' and T, 1in the two
compared rockets are evaluated.
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In each case, since the combustion is assumed complete,

aC(T, - Ty,) = L - (217)
a(l + u)C(T.'"' - Tp''') = L ' ' (118)
On the other hand, the temperatures Ty, and Tp''' at the end of

compression are identical, the compressors operating with the same com-
pression ratio and the same specific efficlency. Hence

Th = Tyt = Ta 2 o (119)

With (119) taken into consideration, the velues of T, and T.''' com-
puted by (117) and (118) can be used to explain formulas (115) and (116).
Finally there is afforded for the rocket with thrust augmentation

ngp = (L - A7) - %E.Qa’“—n + Qg +-9vm] (120)

and for the true rocket with the same total volume:

nep' 't = (1 -amy —ald i) . “)E)_,ax‘n + Q9" (121)

These formulas bring out the reducing effect of the thermal effi-
ciency (1 - A™@) of the theoretical thermodynamic cycle, of the work of
viscosity and friction (in absolute value) in the various parts of the
systems.

These approximate formulas show that, for the extrinsic dilution
to be more beneficial than the intrinsic dilution, that is, 14, supe-
rior to ngp''', it is necessary and it suffices that

Q< (1 + p.)[_QaX-n + Qd"’j - @axn + g;] (122)

This relation states that the work of friction and viscosity in the
mixer referred to unit mass of motive fluid in the thrust augmenter
must be less than the difference in the energies of the same nature
during the compression (the latter multiplied by the factor A% 1less
than unity) and during the expansion in the pure rocket, and in the
rocket with thrust augmentation, the said energies being themselves
referred to unit of mass of fluids in the cycle.
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This precise conclusion is important. There is nothing to assert
positively that it can not be achieved. It is not contradictory to the
Carnot-Clausius principle, and the theory of the viscosity of gases, in
its present state, is insufficient to elucidate the question by theo-
retical considerations. The possibility of satisfying the condition
(122) must be left to experiment.

It may be added that 1n the foregoing the study was limited to the
particular case of thrust augmenters with mixer operating at atmospheric
pressure and that, in general, this condition need not necessarily
correspond to the maximum over-all efficiency of the rocket fitted with
thrust augmentation.

C. SUMMARY AND CONCLUSIONS OF THE STUDY ON

DIRECT AND AXTAL. JET PROPULSION

39. Recapitulation of results
The principal results may be suwmed up as follows:

(1) The explosive rocket is unsuitable as normal system of pro-
pulsion for aircraft by reason of its excessive consumption by weight
and which results from its low over-all efficiency up to very high
speeds, and to the low heat value of explosives.

(2) Only the rocket using an ordinary fuel, for example, liquid,
with high heat value can furnish a normal means of propulsion, and then,
only at very high speeds.

(3) To improve the over-all efficiency of such a rocket or to
lower the speed beginning at which its efficiency becomes important,
it is recommended to increase the dilution of the expelled gases with-
out unduly lowering the thermal efficiency of the complete system.

(4) To this end, either the intrinsic dilution, that is, the
increase in the proportion of air in the combustible mixture subjected
to combustion after compression, may be considered or else the extrinsic
dilution, that is, the entrainment, by the burnt gases, of fresh air
captured from the outside by means of a thrust augmenter tube,

(5) At the present stage of development of heat engines, the pure
rocket using kerosene, with great dilution and at relatively low pres-
sures and temperatures of operation, appears to give a somewhat greater
over-all efficiency than that of a rocket with weak dilution and high
compression, a machine which should preferably be of the reciprocating

type.
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(6) The best solution of the pure rocket using kerosene appears to
be supplied by the turborocket, for which the great dilutions and the
low pressures and temperatures occasion no great difficulty in

realization.

(7) The rocket with augmentation, realizing the extrinsic dilution,
appears susceptible, in certain cases, to a higher over-all efficiency
than the corresponding true rocket.

(8) In order to elucidate this point and to enable the prediction
of the best thrust augmenter the systematlc study of gas augmenters is
imperative.

(9) This study, which is important in numercus applications in
many fields, must rest largely upon the determination of the coeffi-
cient k, which characterizes the kinetic energy losses in the mixer of
a gas augmenter. This coefficient k depends on:

The nature of the secondary and the primary gases and their
physical properties (conductivity, specific heat, internal and contact
friction and viscosity)

The state of these gases (pressure, temperature, velocity) at
entrance in the mixer of the thrust augmenter

Their corresponding proportions (corresponding volume of augmenter
tube)

Lastly, disposition of the augmenter tube (concentric, inserted,
fragmentary Jjets, etc.)

The experimental and systematic study of the coefficient k, even
when restricted to the essential characters of this coefiicient, must
supply all the elements of evaluation, with the considerations and cal-
culations developed in the foregoing but until then it is necessary to
maintain the hypothetical character of the previous conclusions.

Lastly, it should be noted that the present study ties in with the
ideas developed by Rateau in his theory of thrust augmenters, that is,
in the adoption of the concept of a mixer producing an ultimately
homogeneous mixture of primary and secondary fluids at constant pres-
sure, and uniform temperature and velocity. One of the very first
concerns of such an investigation should be to check the basic principle
of this conception, which is still insufficiently established in our
opinion.
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40. Comparison of rocket and engine-propeller system

The over-all efficiency of the engine-propeller system considered
as an isolated system as for the rocket, that is, by disregarding all
aerodynamic interactions between propulsion and the propelled system,
is

Mg = Mth X Mh (123)

Ny denoting the propulsive efficiency of the propeller and ntn the
effective thermal efficiency of the engine (at the propeller shaft),
which efficiencies are defined in the usual manner.

In the air, the propeller constitutes an indirect jet propeller.
In fact it is a question of giving the ambient air a downstream recoil
motion. The simplest way to describe it is by comparing it to the so-
called Froude propeller, according to which the propeller acts on a
cylindrical and limited stream of air to which is communicated a uniform
and axial speed of recoil. Such a propeller may conceivably be realized
by means of two coaxial propellers rotating in opposite direction behind
each other and on the inside of a more or less extended lateral envelope
which forms the boundary of the alr stream on which the propeller acts
direct.

The significance of the concept of the Froude propeller rests on
the fact that, for equal thrust at a propulsive velocity and a given
propeller diameter, this propeller has a slightly higher efficiency
than a good pusher propeller of the usual type. The efficiency of this
propeller is in this respect often regarded as the upper limit of the
propulsive efficiency attainable by means of a propéller for a given
thrust intensity. While not exactly correct from the theoretical point
of view, this mode of viewing it 1s nevertheless Justified by experiment
and for the ordinarily employed propellers.

In any case, when Sy denotes the upstream section of the air
stream stirred up and pushed back by the propeller, a sectlon that may

be compared to the swept-disk area of a propeller <Sh = Eﬁ—,

D = propeller dlameter), and Ppg signifies the density of the sur-
rounding air, an (nondimensional) aerodynamic thrust coefficient of the
propeller can be defined by the relation

PaSh Y
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and it is easily established that the efficiency np of the Froude.
propeller, taken in this instance as the ideal propeller type, is
linked to the preceding coefficient by the relation

h + Ct - :
M = —t (125)

With mA denoting the volume of air stirred up and forced back by this
propeller (A being the specific volume referred to unlt mass of fuel
consumed by the engine),

mA = oaShV ™V = nhmnthL

Ntp = the thermal efficiency of the engine. Hence

thlL
Ct = 27h 265— (126)

Putting

Ngnl
= 12
- (227)

and eliminating ct between (125) and (126) leaves

Ny = %[91_1_55 - {] _ (128)

This relation is identical to (90) which gives the propulsive
efficiency of a rocket with relatively high air consumption a. The
only difference is that the specific volume of air a of the rocket is
replaced here by the specific volume A of the Froude propeller.

Equation (128) shows that mny increases continuously and tends
toward unity when @Q tends toward zero, that is, when n¢p, L, and V
are given, then A increases indefinitely.

This remark suffices to demonstrate, it may be said in passing,
the superiority of the principle of geared-down propellers.

For the ordinary airplane propellers adapted in the best conditions,
the propulsive efficiency np 1s inferior to that of the Froude pro-
peller, the corresponding coefficient of reduction being practically
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constant and of the order of'0.85, so that the efficiency of these
propellers can be expressed by the simple formula

e %Eﬁ 772G - 1] (129)

Compare now the engine-propeller system whose efficiency is to be
summarily evaluated, with the direct reaction propeller, that is, the
rocket.

It has been shown that the explosive rocket cannot be envisaged as
normal means of propulsion, especially by reason of its absolutely
prohibitive fuel consumption by weight in aviation.

Hence, only the liquid-fuel rocket 1s considered.

For i1t to have the same over-all efficiency as the reference
engine-propeller system at the same forward speed, it is necessary and
sufficient that, according to (88) and (129) and with identical fuel in

both cases:
. /l Ntnk Ny 'L (130)
0.85 A1 +2 5 -1l=alfyJ1 + —= -1 130
AVE a'ye 3

the accented quantities refer to the rocket.

In case of equality of the thermal efficiency mny = ngp' for the
two engine propeller systems compared, this condition would be equiva-
Jent to: ’

a' = 0.85A

This condition would become a' = A if the propeller were a per-
fect Froude propeller. The latter being ordinarily considered as the
ideal type of pusher propeller, the following theorem holds true:

For a rocket to be equivalent to an ideal engine-propeller system,
at the same speed and for the same fuel, it is sufficient

(1) That the thermal efficiency of both systems be the same

(2) That the air intake of the rocket be of the same cross section
as the (upstream) section of the air activated by the propeller

The disposition of the two eguivalent systems is shown
diagrammatically in figure 33.

At ordinary speeds of propulsion, the rocket cannot pretend to
furnish, with a suitable thermal efficiency, specific volumes comparable
to those of propelilers.
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But at speeds in excess of 1000 km/h, the rocket is comparable to
the engine-propeller system. At those speeds, in fact, the propeller
appears to undergo an appreciable drop in efficiency which ultimately
results in-the superiority of the rocket-.- - -

The addition of a thrust augmenter holds out the promise of
obtaining, always at high speeds, an appreciable advantage in favor of
rocket propulsion, but the fact cannot be established until certain
experiments, never undertaken to our knowledge, have been made.

The subject is concluded with a remark about the relationship
existing between the previcusly studied types of rockets and the
classical propeller-engine system.

Visualize an internal combustion turbine driving an ordinary pro-
peller, the turbine comprising an air turbocompressor, combustion
chambers, and an expansion turbine; a' 1is the specific volume of the
turbine and A that of the propeller which it drives.

In the most favorable operating conditions, all the expansion
energy of the burnt gases is converted in the turbine into mechanical
energy, part of which is consumed by the compressor situated in the
turbine and part by the propeller. The speed of exhaust of the burnt
gases is negligible at the turbine exit. The turbine being supposed to
have several rumners, it is assumed that the runners situated down-
stream from the upper  stages where the energy necessary to drive the
compressor is realized, are suppressed, and that the expansion of the
exhaust gases 1s accomplished in a well-designed nozzle at the outlet
of the thus-truncated turbine. The efficiency of the latter being
greater than that of the stages suppressed in the turbine, there is
obtained a Jjet of gas whose kinetic energy at ejection is, other things
being equal, a little higher than the energy transmitted to the pro-
peller. The thermal efficiency of the system is slightly improved and,
this time, it is the gaseous jet leaving the thus formed turborocket
that furnishes the propeller force, by reaction.

If the volume of this Jjet is comparable to that of the air stirred
up and forced back (mechanically) by the original propeller, it is
immediately apparent that the corresponding speeds are comparable also,
as well the corresponding propulsive and over-all efficiencies.

The last rummers of the original turbine and the propeller are
merely designed to transfer the energy of the final part of the expan-
sion of the burnt gases to an external mass of air to which this energy
was transmitted in the form of kinetic energy.
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At very high speeds, the superiority of the rocket over the engine-
propeller system increases and it is readily apparent that the suppres-
sion of the propeller and the corresponding stages in the expansion tur-
bine afford, for the realization of the engine-propeller system, a for-
tunate mechanical simplification and a substantial saving in weight.

This is, moreover, one of the reasons which confer particular and
primary interest to the problem of turbomachines with internal-
combustion in the range of propulsion at very high speeds, that is,
above 800 to 1000 km/hour.
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PART TI1I

HELICOIDAL -REACTION PROPULSION  SYSTEMS

Chapter I  Jet Propeller

41 . Definition of the systems under consideration

The systems involved consume a fuel supplied on board the airplane
and take from the surrounding atmosphere the alr necessary for combus-
tlon, to which a corresponding excess can be added.

They are characterized by the fact that the ejection of the cyclic
fluids, more or less converted by the combustion, 1s effected by one or
more nozzles impelled by a helicoidal movement. The type of these
systems is represented diagrammatically by figure 3k4.

The air, taken from the outside atmosphere, enters the machine
through a fixed and axial opening A facing forward.

On passing through the machine this air and the fuel are subjected
to certaln changes in their physical and chemical state comprising
three ¢ssential phases: compression, combustion, and expansion. This
thermodynamic cycle is accomplished in part in a heat engine M and
in part in a rotating system C which comprises the exhaust
arrangement.

The rotating system 1s connected to the engine M and can receive
from or supply energy to the latter. (In the first case, the engine M
is then, strictly speaking, a receiver.)

oriented perpendicular to their helicoidal trajectory and rearward.

System C comprises the exhaust which is effected by orifices'

It drives. a propeller12 H with which it even may be identicsl as in
the case of figure 3k.

) It is immediately apparent that this general scheme comprises the
following particular cases:

llThe term "engine" is taken here in a very general, and so to
speak, algebraic sense; the sald engine may be actually a receiver, that
is, receive energy from the outside instead of supplylng energy to it.

1214 could be assumed that several propellers, equivalent to the
single propeller considered here for the evident object of 51mplif1cat10n,
are involved.
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(a) Rocket with direct reaction.- To obtain the latter, it is
sufficient to eliminate the propeller H and assume the rotating
- system C stationary. The engine: M +then-supplies-no energy to- the-
outside and the fixed exhausts logically take their place downstream
from the engine and to the rear of the arrangement, restoring the
normal outline of the rocket. If the latter consumes no outside air
(true explosive rocket), the air intake A must be removed.

(b) True jet propeller,- To obtain it, simply eliminate the
engine M. The compression of the air is then accomplished entirely
in the rotating arms that constitute the blades of the propeller, the
tips of which are the burners which feed the exhaust nozzles. The
propelier is then driven exclusively by the reaction of these nozzles,
whence the adopted term "pure reaction propeller."

(c) Classical engine-propeller system.- To obtain this system,
simply assume the diameter of the rotating system to be zero. The
exhaust becomes then fixed again and the propeller is driven by the
engine M in which the thermodynamic cycle is completed.

The subsequent operating formulas furnish a sort of general theory
of propulsion systems with direct, indirect (that is, performed by a
mechanical system in the surrounding medium, case of the propeller),
and mixed reaction.

It should be ncted that the exhaust Jets of the rockets are
assumed to face in the opposite direction of the absolute speed of
these rockets. This 1s a simple and logical conception, very close to
that which corresponds, in fact, to the best orientation, and which is
to be discussed again in artlcle 63.

42, Simplifying assumptions

These assumptions, intended to simplify the problem, which
introduce but a negligible error, are as follows:

(1) The pressure in the straight sections S, and Se of the
air intake and the exhaust is uniform and equal to pg.

(2) The state of the fluid in these sections is homogeneous and
steady and their speed uniform, when normal operation is established.

(3) Normel operation, periodic theoretically (especilally with
reciprocating engine), is compared to a steady state, which amounts to
characterizing the quantities considered by their average values during
one cycle, once the steady state is reached.
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(4) The resultant of the actions of the ambient fluids on the out-
side wall of a revolving rocket is reduced to a resistance Re opposite

to the absolute speed W, of the center of the corresponding exhaust
openings.. .. . . :

(5) At the point where the cyclic bodies pass from engine M to
the rotating system C, the speed of these bodies is parallel to the
axis of rotation.

43, Definition and symbols

m = mass of fuel consumed in unit time

a = corresponding consumption of air or ratio of air mass to
fuel consumed in the same time

V = axial

U, = ipheral speed of the revolving rockets (measured
e = peripuera in the center of the exhaust orifice

We = resultant

Be ='angle of We and of V

£
[¢)]
Il

corresponding speed of exhaust in the section Sg

W, = V = corresponding speed of air at 1ts entry in the mouth Sy
of the air intake

= mechanical energy supplied by the engine to the propeller
(by means of the rotating system) and referred to unit mass of
fuel consumed

To define the net thrust supplied by the propulsion system as well
as the resistance of its various elements accurately, the system is
decomposed in three parts:

(1) The central body terminating in front in the air intake A

(2) The propeller blades limited by the straight sections or blade
profiles which correspond, on the one hand, to the passage of the blade
in the central body (Jjunction with the faired hub), and on the other,
to the junction of the blade with the rocket located at its tip

- (3) The revolving rockets to the number of n, arranged
symmetrically around the axis of rotation
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. The central body or envelope and the rockets are fitted with
openings Sg and. Se and the pressure existing in it 1s compared to
the outside pressure pg. These openings introduce a special difficulty
for the evaluation of the resistances, as already pointed out on the
subject of rockets (article 6).

Let

Ry be the resultant of the aerodynamic forces on the outside of
the central body, the resultant assumed oriented along the
propeller axis and opposite to speed V

Ty, the axial resultant of the aerodynamic forces on the
propeller blades, or the propeller thrust

Re the resultant of the aerocdynamic forces on the outer surface
of a rotating rocket, a resultant assumed oriented along the
axis of the rocket and opposite to its absolute forward
speed We

T' +the effect of the thrust which the system can transmit to
the outside

The resistance of a body with open outside surface (the case of
the central body and of the rotating rockets) is the projection on the
speed of displacement of this body counted positive in the opposite
direction of the said speed, of the resultant:

Of the tangential force of the ambient fluid on the outside
surface in question, and of the normal forces of the same

fluid on the same surface, uniformly reduced forces of the
value pg, of the general pressure of the outside medium

Then the resistance of the central body is the force

Rp' =R

m - pasa' (131)
opposite to speed V, the resistance of a rotating rocket; the force
Re' = Rg - PgSe (132)

opposite to speed We and directed along the axis of the rocket. The
force

T = T' + Ry’ (133)
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counted in the direction of the speed V, the force which represents
the total resistance of the central body and of the external systems
that can balance the thrust of the system of propulsion, is termed the
.real thrust of the system..

This convention is logical to the extent that the central body can
be developed so that it constitutes the body itself of the propelled
(or towed) system, as in the case of an airplane with its engine
mounted in the fuselage. The term Rp' includes the aerodynamic
interference of the propeller on the central body. Reciprocally, the
propeller thrust Tp comprises the interference of the central body
and the towed system exerted on the propeller.

With Cyp denoting the propeller torque; counted positive in the
direction opposite to the speed of rotation wy of the propeller, the
propulsive efficiency np of the propeller is

(134)

This definition agrees with that usually employed for defining the
efficiency of an isolated propeller, but in this instance, the terms Tp
and Cp comprise the interference of the outside system and, in addi-
tion, refer only to actions submitted by the propeller blades proper.
The blade tips belong, in effect, to the revolving rockets if the
system comprises it, while the blade roots or the hubs belong to what
i1s called the central body.

In spite of these differences, the discountable values of
efficiency 1 defined by (134) are, for equal diameter and axial and
peripheral speeds, fairly close to those furnished by a complete pro-
peller of the same type, assumed bare and isolated.

On the basis of these definitions, the study of operation of the
system can be undertaken.

As before, energy, work, and heat quantities are assumed to be
expressed per unit of mechanical energy; the numerical calculations
in M.K S. units.
by, Thermodynamic cycle - thermal efficiency

Fuel and air start from an initial state a(p,,Ty) where their
respective speeds at entry in the system are V and zero.




106 ' © NACA ™ 1259

Both the fuel and the air undergo a transformation which brings
them, after passage in the engine M, into an intermediate stage
i(pj,Ti) which is assumed homogeneous and steady where their corre-
sponding speed wj is parallel to the axis of the rotating system and
situated, for each gas particle, at a practically negligible distance
from this axis. (This is equivalent to saying that the gases are con-
ducted to the rotating system by an axial duct of rather reduced sec-
tion, which is, naturally, the system called "jet propeller.")

The cycle is completed in the rotating system and brings the error
to the exhaust state e(pe = pa,Te), likewise assumed homogeneous and
steady, where their corresponding speed is Wy, in opposite direction
to the speed W of the revolving rocket.

With U and V as the internal energy and the volume of the
fuel-air mixture per unit mass of fuel, and mQz, and mQpy as the

heat transfer per unit time of the engine M and of the rotating
system C, the heat transfer of the whole to the outside is

meR = MeRp *+ MORt (135)

According to the definitions given in article 2, the effective
energy Cepr Of the thermodynamic cycle referred to unit mass of fuel
consumed 1is

Cerr = (U + DY)y - (U + p¥)e - @R (3)

and the thermal efficiency niyp of the system in question is

C
Ton = (%)

The heat balance of the whole of the system, expressed by (3), can
be divided in two parts, one of the engine M, the other of the
rotating system C.

The application of the principle of the conservation of energy to
the engine M and to the bodies contained in it with respect to the
axes moving at speed V and per unit of time gives the heat balance
of the engine at

.2 VE
(U+pY), - (U+DY); ~Opy = Cg + (L+2a) 5 -a5  (136)

while taking into account the admitted steadiness of the extreme

states a and 1 and bearing in mind that the engine supplies in unit
time the energy mCp (taken in algebraic value) to the rotating

system C.
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Then the principle of the conservation of energy is applied, in
the same conditions, to the rotating system C (propeller plus rockets).

In this application, the work of the aerodynamic actions supported
by the propeller and the outside walls of the rockets with respect to
the axes in translation must be taken into consideration. The kinetic
energy involved is that of the corresponding motion with respect to the
axes in question. Hence the heat balance of the rotating system is

1 n
(U+pV); - (U+pV)e - Gt = O * @ Cn® + p Re'Ue sin B +

' 2
[% 22 (we? + Ug2 - 2Ugwe sin Be) - (1 + a) E%fz} (137)

Equations (136) and (137) can serve to calculate Cp (or wy)
and Cpwh (or we) when the intermediate state i and the final

state e, as well as the heat loss due to external friction (QRm
end Qgrt) of M and C, are fixed.

These are the relations to be used in the discussion of the thermo-
dynamic cycles, whose realization may be visualized.

In certain problems, it will be expedient to fix, a priori, the
value of Cp. Therefore, we put

Cy = h Cepp = hugpl (138)
The coefficient h thus defined represents the part of the effec-
tive energy of the thermodynamic cycle given off in the form of
mechanical energy by the engine M on the rotating system C with
which it is assumed to be connected.

Adding (136) and (137), while teking (135) into consideration,

gives

1 .
(U +p¥)g - (U - 2¥)e - 8r =7 Cnop * % Rg'Ug sin B, +

i (o]
1+ . Ve
[:—5—2 (%ee + Ug® - 2UeWe sin Be) - a5 (139)




108 | NACA T™ 1259

which expresses the heat balance of the complete system, and which,
with consideration to (3) and (4), that .is, the definition of the ther-
mal efficiency ntp, can be written as

1 n .
Mgnl = @ Oy + 3 Re'Ue sin B +

1+ : Ve
[: =2 (we? + Ue? - 2Ugwe sin Pe) - a E%J (1%0)
a relation which is applied later for calculating the corresponding
speed of exhaust we.
45. Real thrust of the propulsion system

The application of the momentum theorem, in steady state and
projected on the direction of speed V, to the system and to the cyclic
bodies contained in it gives

-T' - (Rp - PgS,) + Ty - n(Rg - pySe) cos Bg =

—m{zl +a) Wy cos By - ai]

Teking the definitions (131), (132), and (133) into consideration,
this relation gives the real thrust T in the form

T =T, - nRg' cos B + m[il + a) Wy cos B, - ai] (141)

The first term of the second member represents the real propeller
thrust (resultant of the indirect reaction caused by the motion of the
latter in the outside fluid), while the third term represents the
reaction due to the fluid jets leaving the system (helicoidal reaction
of n rockets) or entering the system (resistant reaction of the air
intake).

The resistance Re' of a rocket, as defined by (132), can be
expressed in the form

Re' = cp —= SoWg (142)

with cp denoting the coefficient of the aerodynamic resistance of
this rocket, that is, the resistance of the rocket with respect to the
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air den51ty pg, of the amblent fluid to the section Se of the outlet
orifice and to the 1/2 of the square of the absolute speed We 1in the
center of this orifice. . '

The total exhaust volume (by mass) is

m(l + a) = npeSe "V

pe denoting the density of the ejected fluids, so that (142) can be
written as .

1L+a _  Pa V2
S YR
2n € pe COSZBe

Re' =m (l)'"3)

Ye

The thrust Ty of the propeller is expressed by (134) as function
of np and Cpop.

To evaluate the resistant energy Chwh of the propeller the theo-
rem of kinetic moments about the axis of rotation is applied to the
rotating system C (propeller plus rockets).

Multiplying the various moments by wp gilves

mC, - Cpo, - mRy' sin BUg = -m(1 + a)(w, - Wg) sin B.Ug

with the definition of Cp (138) and the geometric relations

Ug = V tan Bg; W = V/cos Be, this equation becomes

Choy, = mhnipl - nRe! sin Be tan BeV + m(1 + a)(we cos Be - V) V tan®Be

(14h)
The real thrust T, expressed by (141l), becomes
hnhqthL ' o wW_ Ccos Be
T=m{—v — + (1+a)(l+ny tanB) V — -
L +p2fa__ ¥ v | (145)
t 5 Pe We COS Bg

in which h, 7my, ngp, tan Bg, and wg are the principal unknowns.

e
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46. Corresponding speed of exhaust

.. By (139) in.which Cpuy is replaced by its.value given in (1hk4) .

Vel 217 4
(1-11)qthL=(1+a)%—-a%,i+1;atanEB; (146)

-This fundamental relation defines we when a, the corresponding
air consumption of the system, nth, the thermal efficiency of the com-
plete system, L, the heat value of the fuel, h, part of the effective
energy of the transferred thermodynamic cycle, in the form og mechanical

energy from M to C, V, the speed of propulsion, tan Be = 3?’ the
inverse of the path of the helicoidal trajectory of the rockets, are
known.

The parameters in (146) are made dimensionless, by putting

W,
Xg = ve (147)
nthl
Q=7 (148)
ER N (119)
a

Then the relation (146) resolved with respect to x assumes the
form

Xe =\/% + taneﬁe + &-g—h—)—Q (150)

The case h = O corresponds to the propeller driven exclusively
by the reaction of the revolving rockets.

The case h = 1 corresponds to the classical engine-propeller
system (without revolving rockets).

Equation (150) shows that, for all intermediate cases, that is,

where h ranges between O and 1, x, 1is greater than % =3 i T This
assures only that we 1is always greater than V, since % is less than

unity.
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k7. Propulsive efficiencies

The over-all efficiency ng of the propulsive system is given by

Ng = Mgn Mp - (8

the propﬁlsive efficiency being defined b
CTp y

™
p = Eﬁ;;f (9)

The real thrust T 1is given by (145). The substitution in (145)
of the notations xe, Q, and & defined by (147), (148), and (149)
results in an expression which, entered in formula (9), gives, after
reduction, the following expression of p

2k
2

5 X (1 + tanEBe) Xo cOS Bg -
Exe - (l + & tan Be)

np=hnh+(l_h)

C
(1 , _te Pa 1 > Lk g 1 (151)

2 B;'xe cos Bg

This relation can be simplified, in general, by disregarding the
term in Cre:

According to previous statements, Cre 15 & number which probably
does not exceed the wvalue 0.12.

The ratio Pa fPe can, at most, reach a value of the order of 2
to 3, because in a device of appropriate thermal efficiency the exhaust
occurs at an absolute temperature, at best, two or three times as high
as the absolute asmbient temperature, a limit reduced here also, since
an appreciable kinetic exhaust energy is involved if a reaction effect
is counted on.

The ratio Xxe = we/V is, in general, a number of the order of
several unities when V remains below 200 to 250 m/sec.

Angle Be should scarcely exceed 60° if V exceeds 100 m/sec.
Therefore, its cosine is, at best, of the order of 1/3. (If & is
compared to unity from which it differs very little in the
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expression (150) of Xxe, we get Xe cos Be = JIV+,2(1 - h)q cosgﬁe
which shows that Xe cos Be 1is certainly greater than unity as long
as h ranges between O and unity.)

The term Crg ps/2peXe cOs B, appears, as before, to be of the

order of 0.10 and therefore negligible in first approximation before
unity.

In a number of particularly interesting cases, this term has a
much lower value, and then it is entirely legitimate to disregard it.

To simplify the general discussion of equation (151), the approxi-
mation is hereinafter considered legitimate by comparing the approxi-
mate value of o to the exact value computed by (151).

The approximate formula of the evaluation of p is

n =nhn + (1 -h) 2& (1 +
P b §xe2 - (1 +¢ tanEBe)

-1
My tan®B.) (%, cos By - 1) + : 3 (152)

In the propulsion system of the general type (fig. 34), the pro-
pulsion is achieved together by the propeller thrust and by the heli-
coidal reaction of the rockets, the axial component of which contributes

to the real thrust of the complete system.

In the second member of (152), the term hny can be regarded as
representing the contribution of the propeller itself to the propulsive
efficiency Np- The rest of the second member should then be considered

as representing the contribution of the revolving rockets and can there-
fore be expressed in the form (1 - h) nf, nr designating the propulsive
efficiency of the revolving rockets.

By definition

np = by + (1 - h)ne (153)
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and the approximate expression of nf deduced from (152), where xg
is replaced by its value furnished by (150), becomes

T]f = m (l + Tlh tan Be)<\/gE + 2(1 - h)Q cos Be] - E’) +6& -1
(154)

Before proceeding to the discussion of the efficiencies Ng> np,

Np, calculated by the preceding formulas, it will be shown that these
formulas comprise, by virtue of particular cases, several formulas
already established or utilized in the first part of the present report
where the influence of the resistance of the rockets (characterized

by Cre) had been neglected.

(1) Simple rocket.- In this case, there is no propeller (h = 0)
and the exhaust is fixed and axial (tan Be = 0). The formulas (153)
and (154) give then

np = Mg = %[&%(1 + 2Q) - %]

which is identical with (90), when £ 1is assimilated to unity.

(2) Normal engine with ordinary pusher propeller.- The exhaust is
still fixed and axial (tan Be = 0), but it involves a propeller which
practically absorbs all the effective work of the thermodynamic cycle
(h = 1). Formulas (153) and (154) then give

Therefore, the formulas established above, namely,

(136) and (137) for the heat balance of the engine M and of
the rotating system C
(145) for the real thrust T .
(150) for the corresponding speed of exhaust we = XV
(152) for the propulsive efficiency np
(153) and (154) for the approximate expression of Mp and ny
"(8) for the over-all efficiency ng

can be regarded as forming a general theory of propu151on systems as
represented by figure 34.
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48. Study of the propulsive efficiency

The discussion involves formulas (153) and (154). The parameters
are &, h, Q, np, and Be.

(a) The coefficient &, for liquid fuel similar to kerosene for
example, is, at most, equal to about 16/15'and tends toward unity when
the dilution of the mixture increases. For simplification & can be
compared to unity, and formula (154) replaced b

1+, tan®g
= T oh)g e[@l +2(1 - h)Q cosEBe - %] (155)

(b) The partition coefficient h can be positive or negative.
(The system called "engine M" (fig. 34) functions then as receiver.)

The values h =0 and h =1 are known to correspond to the pure
Jjet propeller and to the classical engine-propeller system respectively.
Coefficient h can exceed unity in a certain measure, but is upwardly
limited by the value h, for which the gquantity below the radical in
(150) of xo cancels out. Therefore

1+ ¢ tanQBe

= (156)

h<hl=l+

The value (nP>l of the propulsive efficiency for h = hy is
approximately (¢ being compared to unity)

' 1 nh(taneBe - 1)
(qp)1=ﬂh-§l+ >

(157)

This value of p is, in general, positive, that 1s to say, the

system, in fact, propulsion (real positive thrust), because the parame-
ter Q has a fairly high value in the important cases in practice.

130n examination of the absolute error introduced in Tp by
comparing £ to unity, it is found that the modulus of this error is,
at most, of the order of 1/10 Q and consequently very small after the
parameter Q exceeds several unities, which is the general case for
the susceptible realizations under consideration. Therefore, the above
approximation remains valid except when @Q 1is too small. In that
event, the correct formula (154%) must be used for computing ng.
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The value h; therefore constitutes the effective upper limit
of h. When (nP)l was negative, this upper limit will be lower and

reduced to the value of h which cancels Tp and corresponds to a
change in sign of the real thrust.

(c) The parameter Q 1is defined by (148). Consider a fuel similar
to kerosene for which I is of the order of 11,000 cal/kg, or, in
M.K.S. units, L = %5,900,000.

The practical field can be definedlu

by

Ny Trenging between 0.20-and 0.45

a ranging between 20 and T5

V ranging between 25 and 200 m/sec (90 and 720 km/h)
the parameter @ ranges between the extreme values

Q = 3.06 and Q = 1650

The range involved at present or in the near future is defined by
the following extreme cases:

L = 11,000 cal/kg mnyp = 0.30 a =20 V = 117 m/sec = 420 km/h

for Q@ =50

20 V = 55.5 m/sec = 200 km/h

I
(@]
N
(@}
o

il

L = 11,000 cal/kg Ty =
for @ = 150

(d) The propeller efficiency mnp should be as high as possible;
a range between 7y = O. 60 and 7 = 0.80 can be assumed.

(e) The quantity tan Be = Ue/V ranges between O (rockets sSta-
tionary, Jjet axial) and an upper limit which corresponds to the maximum
of the peripheral speed admissible for a rotating system. The applica-
tion of propellers affords around 400 m/sec, while that of turbines and
turbomachines scarcely exceeds 300 m/sec. An upper limit of 40O m/sec
is an optimistic assumption, since the revolving rockets constitute a
system that approaches the turbine by reason of its conditions of ther-
mal fatigue. When V ranges between 25 and 200 m/sec, tan B, 1is seen
not to exceed a limit of between 16 and 2.

lhThese values can be referred to those contemplated for the study
of the rockets in article 25. The extreme values of vt were reduced
here by reason of the difficulty in discounting a thermal efficiency
approachlng 50 percent (article 32).
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The parameters Q and 7 being regarded as fixed (within: the
limits visualized above) and & being compared to unity, the effi-
ciency Tp to be studied is dependent only upon tan B and h. The
values of 7p according to (153) and (154) are discussed in these
conditions. : :

49. Influence of tan B¢ or of the ratio Ug/V
The partial derivative of 17, with respect to Be has the value

on, 2 tan B,

= —— X
§E§ Q cosgBe
{Eh[g + (1 - h)g cosEBe = Ji +2(1 - h)Q cosEBé1 - (1 - h)q COSEBi}

V1 +2(1 - h)Q cos®8e

(158)

It is readily seen that this derivative has not a constant sign.
It cancels out for the following real or imaginary values of PBe

™ 2(1 -7 )
[} 2 h h
tan =0 o =0 co = 1+

Pe cos"Pe S B? 1 - n -th(l - h)q

For cos Bg = O or infinite tan Be, it is certain that Tp
passes through a maximum or minimum whose value

Mp = N = Mh (159)
is, moréover, independent of Q@ and h.

For tan Be = 0, np takes the wvalue

fp = hny + %&1 + 2(1 - h)Q - 1] (160)

which obviously totalizes the effect of a pusher propeller and of a
fixed rocket with radial Jjet. This value is either a maximum or a
minimum, depending upon whether = exceeds or falls below the quantity
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, 1
0.5|1 + YT h)Qj

Thus, while it is of interest to increase tan Be, the permissible
maximum peripheral speed Ug of revolving rockets imposes a limit.

50. Influence of the division factor h
The partial derivative of 1, with respect to h - is

onp . (1 - Th tan23e> cos<Be
Sh ~ 'h Y1 + 2(1 - h)Q cosBe

(161)

This derivative cancels out for the unique value hp of h given by

(1 - ) (X + ny + 2ny tangﬁe)
2qn;2(1 + tan®p )

hy =1 - (162)

This value is less than unity. It is therefore certain that (156)
is satisfied (that is, that xe 1is real) and that the real thrust is
positive, that is to say, the system is actually propulsive. TFor
h = hp, the efficiency Np Ppasses through a maximum greater than np

and is therefore positive.

The relative difference A of this maximum with respect to the
propeller efficiency N, is

(np)max " Th (l - nh>2 COSzBe

A= =]
Th Th 2Q

(163)

to the extent that 7 is smaller, as tan Be approaches nearer to
zero and @ becomes smaller.

Hence, it can be positively stated that, with 1n, and Q con-
sidered as fixed and invariable, the arrangement of the Jjet propeller
improves the propulsive efficiency 17 with respect to the usual
engine-propeller system whenever this arrangement functions with a
coefficient of distribution h = ho defined by the condition (162).

The limits of this possible improvement for the extreme cases of
interest in actual practice in aviation or in the near future are
evaluated.
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The extreme cases are those defined in article (48) by

3.06

45,900,000 M4 =0.2 a=75 V=200 Q

25 Q

L
1650

20 v

L

)4-5,900,000 Nth = O.l;.5 a

For an assumed peripheral speed Ue limited to 400 m/sec, tan Be
ranges between O and 2 and O and 8, respectively.

On the other hand, n may be estimated as ranging between 0.6
and 0.8, Under these conditions, it is possible to set up,utilizing
(162) and (163), table XXII1D, indicating the value of h which supplies
the corresponding maximum improvement A in propulsive efficiency Tp
(with respect to the engine-propeller system) as well as the value of A
and of the corresponding meximum of np.

‘ Table XXII
Q tan Be | My h, A (np)pax
3.06 0 0.6 | 0.709 0.0726 0.6435
.8 .908 L0102 .8082
2 .6 . 768 L0145 .6065
.8 .916 . 00204 .80163
1650 0 .6 .99946 .000135 . 600081
. .8 .99983 .000019 .800015
8 .6 .99959 .000002 . 6000012
.8 .99985 .0000003 . 8000002k

1orgb1e XXII gives the value of h for the case where tan Bg = O.
It may seem surprising that we contemplate a value (0.6 or 0.8) for the
propeller efficiency nn and that the latter couvld contribute to the
propulsion, since Ug = V tan Be 1is then found zero. Actually, Ue
represents only the periphemal speed of the propeller if the latter was
obligatorily Jjoined to the arms which carry the exhaust rockets. But
this disposition; exemplified in figure 34, is not obligatory. The
case tan Be = 0, with h % 0, can thus be conceived in principle. It
corresponds to an exhaust by stationary rockets and a propeller geared
to an engine which in form of mechanical power realizes only a fraction
h of the effective power of the complete thermodynamic cycle.
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The figures in this table show that the maximum of Tp is very
near the value of 1np which in the most favorable case (Q 3.06) may
not exceed T percent, equivalent to a very high propulsion speed of
(720 km/h).- In this event, this maximum is reached at a value of h
near TO percent, that is, when the engine M transmits to the propeller
only TO percent of the effective power of the complete thermodynamic
cycle.. For the ordinary cases in practice, as defined by a value Q
ranging between 50 and 150, the maximum of 7q is not discernible from
the propeller efficiency Th and is reached when h 1s practically
identical with unity.

51. Variation of Mp in ordinary cases in practice

In order to clarify the preceding algebraic discussion, by numeri-
cal examples, there are reproduced in tables XXIII and XXIV the results
of the calculation of np and its various elements for several values
of np, tan Be, and h, namely

My = 0.6 and 0.8
tan B = 0, 2, 4, 6, and tan Be infinite
h = 0, 0.25, 0.50, 0.75, and 1

The values of 50 and 150 given in parameter @ appear to comprise
the ordinary cases in practice and correspond, for example, to the
following conditions:
it 20 V = 420 km/h  for Q = 50

11,000 cal/kg mgp = 0.30  a

1]
1
I

L

1f
1l
1l

11,000 cal/kg Mg = 0.20 a =20 V = 200 km/h for Q = 150

The data in this table are represented by the curves of figures 35,
36, 37, and 38. On examination of these curves, it is clear that, within
the range of application of (50 <Q <150) and when Q and 7y, are

assumed constant:

(1) Np increases with tan Be, that is, with the peripheral
speed Ue of the rotating rockets when h has a fixed value comprised
between zero and unity.

(2) Regardless of the value of tan Be, the maximum of np 1s
practically equal to 1} and is obtained for a value ho of h
practically equal to unity.

(3) It is therefore of interest to have h as near as possible to
unity and it is then practically immaterial to make the exhaust rotate
at any one speed.




Table XXIII
Q=50
Tp = 0.60 My, = 0.80
\ - A
™ = Olh = 0.25(h = 0.50[h = 0.75|h = 1.0[/h = O[h = 0.25|h = 0.50/h = 0.75/h = 1.0’

e = 0.181{ 0.206 0.246 | 0.368 1.000 [0.181] 0.206 | 0.246 0.368 1.000

(L - b)ne =| .181 154 .123 .092 0 .181 154 .123 .092 0
tan Be hny = 0. .150 .300 | .k50 .600 .200 | .koo .600 .800
Tp = 181 .30k RIK] 5h2 .600 | .181 .354 .523 .692 .800
¢ = 243 272 31k | .396 680 | .300f .336 | .389 .488 .84o

: (1 - h)ne =| .243 204 157 .099 0 .300 .253 .19k 122 0
an Pe hny = 0. .150 .300 L1450 .600 .200 . koo .600 .800
Ip = 243 .354 A57 .549 .600 | .300 A52 .5945 722 .800
nf = 3k 376 418 .48k 625 | b RN .52 .628 .815

(1 - h)ne =| .34k .282 .209 121 0 kT .368 272 157 | 0

tan Be hny, = 0 .150 .300 | 450 .600 .200 | .koo .600 .800
Np = 34 432 .509 571 600 | JL4T .568 672 157 .800
N = Q16 bt . 480 .530 .610 | .5hT .589 .634 .698 .805

(L - n)ge =| 416 .335 .24o 1325 | 0 5L7 RN .317 ATH5 | O
tan Pe hny, = 0 .150 .300 | .450 .600 .200 | .h0O .600 .800
Tp = 16 485 .540 .5825 .600 | .54T 641 CTLT AT .800
= .600 .600 .600 .600 .600 | .800 .800 .800 .800 .800

tan @ (1 - h)ne =| .600 450 .300 .150 0 .800 .600 R Tolo) .200 0
e hny, = 0 .150 .300 150 .600 .200 .hoo .600 .800
np = .600 .600 .600 .600 .600 | .800 .800 .800 .800 .800

6GST WL VOVN

ocT -
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‘Table XXIV
Q = 150
T]h = 0.60 T]h = 0.80
VA ;
“h=0 | h=0.25 =0.50] h=0.75 =1.00"h=0 [h=0.25 | h=0.50 |k=0.75| h = 1.0
1 = 0.109 0.125 0.150 0.206 1.000 | 0.109 | 0.125 0.150 0.206 .| 1.000
N _ (1 - h)yr = .109 .093 075 .051 0 .109 .093 075 .051 0
an Pe =0 | oy = 0 .150 .300 150 600 | 0 .200 .00 .600 .800
p = .109 2k .375 .501 .600 .109 .293 L4715 .651 .800
Ny = 154 175 .208 .272 .680 .190 .216 .256 .336 .840
(L - hiye = .154 131 .10k .068 0 .190 162 .128 .084 0
tan Be =2 | ) - 0 .150 .300 150 600 | o .200 koo .600 .800
np = .15k4 281 Lok .518 .600 .190 .362 .528 .684 .800 -
e = .195 .219 .256 .326 .640 .250 .282 .328 .20 .820
(1-n)me-= .195 .164 .128 .082 0 .250 .2105 164 .105 0
ten Pe = 3 |y = 0 .150 .300 450 600 | 0 .200 .hoo .600 .800
Np = .195 .31% 428 .532 .600 .250 4105 .56} .705 .800
Ny = .23k .263 .302 .376 .625 . 306 .3h2 <394 .188 .81k
(1 - h)np = .23k .197 .151 .19k o .306 .256 197 .122 0
tan Be = & | pp - 0 .150 .300 .450 600 | 0 .200 .%00 .600 .800
np = .234 b7 451 Sl .600 .306 456 597 .722 .800
np = .27 .300 .34 .392 .615 .356 .395 448 .516 .806
& _ (L -b)p = 271 225 L1705 .098 0 .356 .295 204 129 0
an Pe = hny = 0 .150 .300 450 .600 | © .200 koo .600 .8o0
np = .2TL 375 4705 548 .600 .356 495 624 .T29 .800
g = .305 .33 377 ks .610 ko1 ko ko6 .588 .805
(1 -h)yr = .305 .250 .1885 .1115 0 .ho1 .330 .248 b7 0
tan Be = by, = 0 .150 .300 150 600 | o .200 .400 .600 .800
p = .305 R iTelo] 4885 .5615 .600 ol .530 .648 LThT .800
N = .600 .600 .600 .600 .600 .800 .800 .800 ..800 .600
tan By = (1 - h)ng = .600 450 .300 .150 0 .800 .600 koo .200 0
€ by = 0 .150 .300 450 600 |0 .200 .4oo .600 .800
np = .600 .600 .600 .600 .600 .800 .800 .800 .800 800

ST

Sl
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In these conditions (Q and np constant), it can thus be con-
cluded that the rotating exhaust arrangement is of no importance for the
improvement of propulsive efficiency Tp defined by the fundamental

fmmﬂa(%
52. Study of over-all efficiency g

The over-all efficiency ng being, by definition, the product of

the thermal efficiency ntp by the propulsive efficiency np, it is
readily deduced that:

When 1tp, Q = Mp L/aVe, and np are fixed and constant, the

rotating exhaust system cannot, in the ordinary cases of practice, pro-
duce an appreciable improvement in the over-all efficiency 7g.

The assumption of Tntp constant is Justified in the comparison of
various propulsion systems empodying a propeller.

To make the preceding conclusion void, it is therefore necessary to
envisage the means of modifying n¢; or Q, or both, for a rotating

exhaust system, in such a way that the product Ny X np = ng is

increased with respect to the classical engine propeller system. Of
course, it is assumed that the system in question operates at the same
speed of propulsion and consumes the same fuel. The quantities V and
L Dbeing thus fixed, it is seen that the desired result is only obtain-
able by a modification of n¢p and a.

These quantities being intimately related, the discussion is
reduced to the thermal efficiency ntn of the various systems which can
be visualized, namely, one obtained by adapting a rotating exhaust to a
reciprocating engine (with explosion or inJjection) of the conventional
type, or one obtained by special adaptation of an engine of suitable type
to the rotating exhaust system.

53. Rotating exhaust adapted to a standard reciprocal engine

In the standard airplane engine, the cylinders empty periodically
in the exhaust pipes and the latter evacuates the burnt gases in the
atmosphere.

The multiplicity of cylinders and the high frequency of their
exhaust phases are the reason that the exhaust pipes deliver a mixture
of gas (and superheated water vapor comparable to gas) whose state and
speed are practically constant. It is this state, identified by sub-
script e, that was taken into consideration in the definition (4) of
the thermal efficiency nip, which was adopted. The corresponding
pressure 1s equal to that of the surrounding medium and the speed of
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ejection We 1s ordinarily so small that its propulsive reaction is
insignificant and can be disregarded. If a Jet turbine is mounted on
this point, practically no useful power is realized without raising
again-the exhaust pressure in the engine, which involves a reduction of
the effective energy.

There is only one means by which the addition of an exhaust turbine
to an engine affords a gain in effective energy without modifying the
internal cycle and that is by lowering the external pressure which is
produced naturally when an airplane ascends in the air. This is the
principle also of Rateau's supercharging method, a method by which the
gain in effective power thus obtained is utilized to supply the engine
with compressed air at standard atmospheric pressure. It affords the
reestablishment of the rated horsepower of the engine.

The rotating exhaust system whose adaptation to a standard engine
is being investigated operates as a gas turbine of the helical-
centrifugal type, according to the well-known principle of the reaction
wheel.

By means of this device, the exhaust pressure of the engine can be
raised, kept constant, or lowered, when the outside pressure is assumed
constant and the question is whether the thermal efficiency n¢p, of
the whole thermodynamic cycle can be improved by this method.

However, before dealing with this question, it is advisable to
examine closely the (essentially discontinuous) functioning of the
exhaust of a standard engine and its effect on the thermal efficiency
defined by formula (4).

Consider, by way of illustration, the Watt diagram of a standard
four-stroke-cycle engine (fig. 39).

The exhaust phase is represented by the arc gj of the curve
traced by the indicator. During the quasi-totality of the corresponding
stroke of the piston, the pressure in the cylinder is sensibly constant.
This "internal exhaust pressure" is denoted by Py -

On the outside of the cylinder the evacuated gases, starting from
a variable and intermediate state between® g and Jj, arrive at the
exhaust pipe exit in a supposedly uniform state (p., T.), and at a

uniform speed we. It is this outside exhaust state that is used in
the definhition (4) of the thermal efficiency T4y ©Of the total thermo-
dynamic cycle comprised between inlet and exit of the engine.
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Assuming that the transformation gj in the cylinder, as well as
the flow of the gases in the exhaust pipes is adiabatic, that is, with-
out exchange of heat with the walls, an assumption that is practically
realized in the usual engines, and denoting by U and ¥V the internal
energy and the volume of the mass M of the active bodies per unit mass
of fuel and by € the ratio to this mass of that of the residual gas in
the cylinder in state j when the exhaust is terminated, the applica-
tion of the law of conservation of energy to the residual gases during

the adiabatic transformation gj gives
'Pi(zj -.Yg) = Uy - Ug (164)

or by comparing these gases to perfect gases and designating the ratio
of the specific heats by 7 = C/c (at constant pressure and constant

volume )
1 1\Pi
Te = To|= + (1 - =)= 16
g g& ( 7)pg1 (165)
Py
a relation which gives Tj as function of Tg, when — 1is fixed.
g

is less than T,.

P
It is noted that, Ei being less than unity, Tj o

g

This formula enables the corresponding mass € of the residual
gases to be computed with respect to the evacuated gases. With T as
the ratio of volumetric compression, (maximum volume/minimum volume of
cylinder) we get

TGYJ = (l + G)Yg

or, with allowance for (165) and the equation of state of perfect
gases po = (C - ¢)T

¢ = L | (166)

. T(Pg _ )
(r - 1) + \p; 1

l6This transformation is, essentially, irreversible by reason of
the sudden expansion produced in g at opening of the exhaust. In the
present instance the arc gJj of the diagram was compared to the two
rectangular segments at right angle.
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The law of conservation of energy is next applied to the total
evacuated and the residual gases, during the total exhaust @ge,

PV + piEl + e)yg - Glﬂ'=ﬂe + eU - (L +e)U + §Ve2

.Equation (164) and the law ‘of perfect gases (particularly the
law U + pV = MCT '+ Cte) make it possible to express the foregoing
relation in the form

Pi

1+ (y - V)=

= 2

o =T Pg _ Ve _ g _ VeS (167)
8 y 2C J 2¢

The outside exhaust temperature Te 1is therefore lower than the
residual gas temperature (flnal internal exhaust temperature)
by weg/QC the difference belng so much greater as the gas in state e
is exhausted at a greater speed.

It will be noted that, since the transformation Jje 1is adiabatic
and irreversible, the entropy of the gases is greater in e than in Jj,
and, as Te 1is lower than Tj, the pressure pe 1is certainly lower
than pji. The loss of head (pj - pe) of the cylinder at the exhaust
outlet depends on we according to a definite law, but is difficult to
specify because the latter is influenced, notably, by the shape of the
valves, by their law of ogening, as well as by the shape of the exhaust
pipes, the number of cylinders, etc.

In any case, the foregoing summary analysis permits the circum-
stances which determine J and e to be distinguished.

The pressure Dpe is given and equal to pg.

Consider, on the other hand, the state g as being given. The
speed we at the exhaust outlet can be modified by altering the shape
and the sactions of the valves and pipes. The loss of head (pj - Pe)
depends primarily on we and increases with we.

Then it is deduced from (167) that, state g(pg, Tg) being given
as well as pressure De = Dg, an increase in we 1is accompanied by an

increase in pj, Tj,-and

1TThe rise of T; and ¢ slightly modifies the filling of the
cylinder, during the induction phase. as well as the action of the walls
and therefore involves a general wodification of the thermodynamic cycle
which does not leave the state g rigorously constant. But these modi-
fications are altogether of secondary order if We is not made to vary
abnormally.
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As regards the variation experienced by Te, nothing can be
affirmed, a priori, concerning its sign, as the latter depends upon the
rise of the back pressure (or internal pressure) piy of the exhaust,
that 1s, the loss of head (Pi - pe) of which the law, as function of we,
is not sufficiently known to permit definite conclusions.

It might be asked whether it would be of interest to modify the
exhaust of a normal engine by adding a turbine which would realize the
kinetic energy of the evacuated gases.

It will be seen that, when we 1s increased, the state g (start
of exhaust) and the outside pressure pe being assumed fixed, the back
pressure p; 1in the cylinder 1s raised. This reduces the energy of the
cylinder, but the kinetic energy acquired at the exhaust outlet can be
utilized in the turbine. The energy thus realized can outweight the
diminution of the energy of the engine, if thé back pressure in the
cylinder is high enough and the turbine efficiency is adequate.

In particular, if p; 1s raised up to pg, that is, exhaust at
constant pressure is realized, the loss of energy in the cylinder is
approximately equal to Yg(Pg - Pe), whereas the energy supplied to the
turbine (utilized by the latter with its proper efficiency) is that of
the adisbatic expansion from Pg to pg or

pg>1/7

4
Vo|Pg - P <
y -1-8|7¢8 €\Pe

which i1s considerably greater than the previously evaluated energy loss.

If, in these conditions, the exhaust of a ngrmal engine is regu-
lated, without modifying the induction pressurel , the engine charge
and, consequently, its ratio of effective power to weight is consider-
ably reduced. Moreover, the influence accruing from the residual gases
lowers the efficiency and modifies the state g, which voids one of the
assumptions of the preceding calculations.

This draw-back is removed by making provision for induction at high
pressure and as close as possible to the exhaust pressure, but the pres-
sure pg at start of the exhaust itself 1s raised and remains higher

l8However, it would be necessary to delay the opening of the intake
so that the cylinder is at low pressure and that the feeding could be
effected at normal pressure.
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than the back pressure. The only advantage accruing from this arrange-
ment (Rateau's procedure of supercharging by exhaust gas turbine) is the
increase of power supplied by a given engine. In fact, this method is
never applied on airplane engines at sea level, where, by reason of the
limitations imposed on the compression temperatures by the risk of auto-
ignition and spontaneous detonation, the rate of compression in the
cylinder must be ‘reduced, which involves an appreciably lower efficlency
considering the fairly inferior efficiency (of the order of 65 to 75 per-
cent) of the turbine and of the compressor which the latter operates.
The method is applied only to engines at altitude where the natural
decrease in the outside pressure makes the utilization important.

But in injection engines, on the other hand, the supercharging by
exhaust turboblower is practical, even at ground level, in particularly
favorable conditions.

In all cases, the back pressure p; in the cylinder is maintained
at some value between pg and pe which is controlled by modifying the
volume or the opening of the exhaust pipes that lead to the turbine.

The rotating exhaust presents an arrangement similar to the Rateau tur-
bine, but in which the pressure pyx upstream from the turbine (pressure
necessarily lower than the back pressure p; 1n the cylinder) can,
within certain limits, be higher or lower than the final exhaust
pressure DPeg-

To determine the effect of this arrangement on the thermal effi-
ciency nyp, defined by (4), compare a standard engine with that
obtained by adapting a rotating exhaust to the former.

For the standard engine

ngpl = (U + pV¥), - (U + V) - g (4)

and for the engine with rotating exhaust
Nep'L = (U + pV)g - (U + p¥)er - G’

Suppose that the exhaust in both engines is adiabatic (in the
cylinder as well as in the pipes to permit the use of the above formulas)
and that the rotating exhsust modifies neither the heat loss through the
walls of the engine nor the work of the passive resistances nor the
state g of the gases in the cylinder at incipient exhaust.

Under these conditions, the usual engines show Q' = Qg and
according tc the preceding relation

(gn' - el = (U + p¥)e - (U + pV)e" = MC(T, - Tp') (168)
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The variation (ﬂth' - Ntp) can be evaluated by simply determining
the modification which the rotating exhaust can produce at the terminal
exhaust temperature Te. '

Figure 40 is an entropy diagram of the exhaust gases showing the dif-
ferent states and transformations of these gases during the exhaust.

The exhaust, for the normal engine, is assumed to be regulated in
such a way as to give 1t a zero speed Wwe. The back pressure pqi 1is
then very near that of the terminal pressure ©pe which is given and
equal to pg. The loss of head (pj - pe) across the valve and the pipes
is, in fact, minimum.

The transformation gj of the gases in the cylinder is adilabatic
and irreversible (entropy increasing, temperature T5 given by
formula (165)). On the other hand, according to (167), the tempera-
tures Tj and T are equal. The states g, j, and e are repre-
sented, in these conditions, by the corresponding points in figure 4o.

For the engine with rotating exhaust, the state of the burnt gases
(back pressure pj) in the cylinder at the end of the exhaust (residuary
gases) is denoted by Jj; the state and the speed of these gases in the
pipes, at entry in the rotating part, the section supposed to be situ-
ated in the axis of the rotating system and identified by a steady state
of flow of burnt gases, are denoted by k'(pk', Ty ', wk’); and the final

state at the outlet of the rotating system by e'.

It is assumed that the state g 1itself is not modified. On the
other hand, it should be admitted that, for acceptable utilization of
the engine, the back pressure p;' 1s, at best, equal to pj.

Lastly, the gases in the rotating system are subjected, between
state k' and e', to a compression assumed adiabatic and which is
necessarily irreversible, hence of increasing entropy.

The states g, Jj', k', and e' for these conditions are also shown
in figure 40. As to the evaluation of the difference (T - Te') of the
ordinates of the figurative points e and e', it should be noted that,
ri' being at best equal to pi and the irreversibility of the exhaust
in the cylinder and with it the entropy of the gases increasing with
decreasing ps;', the point J' 1is on the right side of point j over
an isobar (p;') situated below the isobar (pi).

On the other hand, in proportion, as the speed wy' of the gases
in the center of the rotating system is assumed to be greater, the pres-
sure pyx' 1is lower than the back pressure p;'. It may be admitted
that, in the same conditions, the variation of the entropy (Sk' - SJ')
increases.
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Lastly, the rise in entropy (Se' - Sk') is greater as the differ-
ence (pe - pk') is greater (in absolute value) and the speed wk 1is
higher. ' '

In consequence, the polnt e' 1s at the right of point e on the
isobar (p, = Pgy) and To' 1is greater than T, and 7ny,' smaller
than 1y, and the difference is so much greater as the pressure p;i'
is lower or speed wy' is higher.

. Hence it must be concluded - provided, of course, that the (very
plausible) assumptions made here for the sake of simplification of the
discussion are legitimate - that the rotating exhaust involves, neces-
sarily, a degrease in the thermal efficiency ntn of the thermodynamic
cycle as defined by the formula (L4).

A lower 1limit of this decrease can be obtained by neglecting the
differences (p; - pe) and (py' - pk'), by assuming the speed wy' zero

like the speed Wy, in which case these differences are minimum and
practically very small, lastly, by disregarding the irreversibility of
compression of the gases, from p,' = p;' to Pe' = Pg, in the rotating

system. By (165) and (167), we then get for the normasl engine

Te = TgE ( 7)?3

and for the engine with rotating exhaust

r-1
< 1>pi' Pg |7
[ _ 2= ==
e = Tk +{1 Y Pg Pil
whence, by (168) and after reduction

7-1 1
MCT P -y P p.' y
'Eth' - Tlth] ( a'> -1+ (y -1) 17:— <f) - 1|7 (169)

Consider, by way of example, the case of a normal type of explosion
engine with (in M.K.S. units)

Tg = 273° + 700° = 973° Pg = upa(pa; 10,000)

MC = 18,000 L = 45,900,000



130 ' NACA T™™ 1259

for which, in the conditions cited above

To = Ty = 784° = 273° + 511°

and for the engine whose rotating exhaust is supposed to function with
a back pressure reduced to half (p;' = 0.5p,)

T' = Tyt = 752° = 273°% + 479°

© = 273% + 626° = T, + 115°

3
L}

o' = 899

The decrease 1n the thermal efficiency of the complete thermo-
dynamic cycle is

My - nth' = 0.045

and this decrease, already appreciable, constitutes a lower limit (for
the chosen wvalue of pi' = O.5pa) by reason of the ignored irreversibili-~
ties. This example further shows that the temperature of the gases at
the outlet of the rotating system can be considerably raised, and this
fact reveals, if one deals with an explosion engine whose exhaust is
always at high temperature as in the chosen example, certain difficulties
in the realization of the rotatling system and the behavior of its
components.

The conclusion is that, no matter how attractive it may appear,
the idea of utilizing the rotation of a propeller with hollow blades
(terminated by rockets) to insure, with a reduced back pressure, the
expulsion of the exhaust gases of a normal aircraft engine can only be
achieved at the price of lower over-all efficiency of the propulsion
system. This idea, therefore, does not merit being retained.

Note: (1) It should be noted that the drop in 7y, due to the
rotating exhaust is obtained in spite of an increase in indicated energy
(and, consequently, in effective energy) of the engine.

In fact, the lowering of the back pressure in the engine itself
increases the area of the diagram and, consequently, the indicated
energy. But apart from and in consegquence of the engine, the irreversi-
bilities which occur have the effect of raising the terminal exhaust
temperature To' by causing a reduction in the effective energy Cerff
of the complete thermodynamic cycle, the energy defined by the funda-
mental formula (3) and which is not identical with the effective energy
of the engine.
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(2) Incidentally, it is pointed out that, for the effective energy
of the heat engine (power available at crankshaft) to be identical with
the effective power Ceff, it is sufficient that the exhaust be adia-
batic and that the difference in the kinetic energy of the active bodies
dt entry (state a) and at exit (state e) be zero. It is only in these
conditions, almost always reached with the ususl engines, that the
case h = 1, with the definition (138) of the coefficient of division h
adopted in article 4k, corresponds to an engine whose energy Cp, trans-
mitted to the propeller, represents the total effective energy which
this engine develops when the complete thermodynamic cycle is actually
realized. 1In practice, this 1s the case with the normal engine-
propeller combination such as used on airplanes.

(3) Lastly, it should be pointed out that lowering the back pres-
sure in the cylinders, permitted by the rotating exhaust, improves the
cylinder charge and reduces the losses due to the presence of residuary
gases in the free space. It undoubtedly permits, everything else being
equal, the extreme pressure ratio of the compression phase to be raised,
and at the same time the temperature Tg 1n the cylinder at the start
of the exhaust to be reduced.

These facts, favorable for a certain improvement of the power by
weight and the efficiency of the engine, were disregarded in the pre-
ceding discussion. They undoubtedly attenuate to some extent the
unfavorable conclusion but do not appear to modify the general result.

54. Engine specially adapted to rotating exhaust

The theoretical heat engine, specifically designed for rotating
exhaust, includes an adiabatic and reversible compression of the com-
bustion air (solid or liquid) from p, to p, = A.Py, an adiabatic and

complete combustion at constant pressure p., and an adiabatic and
reversible expansion of burnt gases from p. to pg. (The character-
istics and the thermal efficiency of this theoretical cycle for wvarious
compression ratios Ac and corresponding excess & of air in the fuel
mixture were given in table XIII.)

In the realization of thils theoretical cycle, the imperfection of
the real machines modifies the characteristics and the efficiency and
it is very important to determine the most favorable conditions of
realization as well as the results which can probably be obtained in
practice.

To begin with an extreme case, consider an ideal machine which
yields the perfect, particularly advantageous, theoretical cycle defined
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3, Ac = 45, to which corresponds a thermal efficiency of
0.664 (cf. last line, table XXII) and a parameter Q defined by

by
Nth

i Q

_ Nthl _ 0.66kL x 0.664 x 48,000,000 _ 542,000
ay2 b x 14.68 x v° Ve

Q

If V varies from O to 300 m/sec (O to 1080 km/h), Q varies from
infinity to 6.2 and it is immediately seen that the maximum n¢p and
g is reached when the coefficient h 1s very near unity, that is,
when the principal part of the effective energy of thermodynamic cycle
is supplied to the rotating system, in form of mechanical energy, by
the engine to which it is linked. :

Hence, it appears, a priori, that, the conditions are unfavorable
when considering systems in which the rotating system receives, in the
form of mechanical energy, from the assoclated system only a reduced,
zero, or even negative part of the effective energy of the thermodynamic
cycle, the latter being assumed defined and constant.

This presumption is confirmed by treatment of the specific case of
the propeller driven exclusively by reaction, the case defined by h =0
and in which the propeller is moved only by the tangential reaction of
its exhaust rockets, and subsequently, the case of a jet propeller
associated with an internal combustion turbine under the best conditions.

The study of the first of these problems then leads to the case of
the specific efficiency (the ratio of energy actually supplied to the
theoretical energy avallable) and of the internal efficiency of tan-
gential reaction turbines with one wheel, that is to say, of a gas
turbine.

¢
55. Propeller driven exclusively by reation

In this case (h = 0) where the assoclated system supplies no
mechanical energy to the propeller, two different methods can be con-
ceived: either by omitting the associated system, in which case the
preliminary compression must be assured in the propeller itself,
operating as centrifugal compressor, and the combustion effected in the
rotating rockets; or by eliminating any mechanical connection between
the propeller and the associated system and conceilving the latter in the
form of a balanced engine, that is, supplying no effective energy. This
balanced, engine may, itself, be presented in two principal forms: either
realizing the compression, the combustion, and an adequate portion of
the terminal expansion in such a way as.to balance the resistant
energies of the engine by the corresponding expansion energy (case of
integral cycle); or else constituted by a normal engine engaging a com-
pressor that supplies the compressed combustion air to the rotating
unit (case of divided cycle).
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56. First type, propeller isolated

This type of machine, proposed and studied by various inventors,
-is tied to the ancient idea of the autocompression gas turbine, an idea
encountered in various patents or designs of turbines with gas or with
internal combustion. (This idea has been exhaustively studied by
Nernst.) '

Without touching upon the problems relating to the functioning of
the combustion chambers disposed over the periphery of the rotating
system, it is expedient to observe that the thermal efficiency is
chiefly dependent upon the compression ratio and it is necessary to
evaluate the one that permits this arrangement to be realized.

In the rotating system, the power Pg expended on the compression,
and which changes the state of the air from 'a(pa, a) to state
b(pb, Tb), is, on the assumption of adiabatic compression as is practi-
cally inevitable for a system of this type,

U2 + V2 - sz
= aC(Ty, - Ty) = a 5 (170)

Pa

where

a = volume (by mass) of air

V = corresponding speed of air (axial in theory) at entry in
rotating system (state a)

U = peripheral speed of system, at the point where the air reaches
state D

Wy, = corresponding velocity of air, at the same place, in the
rotating system

With Py &as the specific efficiency of the compressor with respect

Y
to the theoretical adiabatic, the ratio of compression Ay = 52
a
obtained reads

_7_
2 2 2{7-1
PaPq Us + Ve - wy,
Ap = l:l + aCT:l E *+ Pa 20T, (171)
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By way of example, take the most favorable conditions by assuming
Ppg =1 and wy = 03 for air: ¥ = 1.4034; (7 - 1)/7 = 0.2875; C = 1000
(in M.K.S. units) (In this instance the values adopted by Rateau, as
the most recent, are used.) and W< = U< + V2. Formula (171) then reads

W 3.48
M =11+ 35001,

with which the maximum theoretical compression ratio Ap
by centrifugal compression can be computed as function ot
off Tg.

(172)

obtainable
W and

By taking the values of T corresponding to altitudes O, 5000 m,
and 10,000 m in standard altitude, and varying W from O to 500 m/sec,
the values Ap shown in table XXV are obtained.

Table XXV
Theoretical Centrifugal Compression (Adiabatic) of Air

as Function of the Resultant Speed W and

Atmospheric Temperature T,

o [Ta =273 +15°=288° Z=0m Py = Py = 10,330 kg/m®
a Ty = 2559 Z =5,000m pg = 0.53k4 py \
value |T, = 223° Z = 10,000 m p, = 0.261 p,
y 100 200 300 00 500
?m?sgc) ?
T, = 288° | Ay =1 | 1.0627 | 1.2634 | 1.6562 | 2.3482 | 3.506
Ty = 2555 | My, =1 1.0699 | 1.3000 | 1.7580 | 2.5774 | L4.0013
T, =223° | A =1 | 1.0801 |1.3489 | 1.89k2 | 2.9081 | L.7048

These data are represented by the curves of figure 41, which also

contains a diagram by means of which W = JBE + V2 can be immediately
computed as function of U and of V.

In practice, V

200 m/sec, and the efficiency p, of the adiabatic centrifugal

cannot exceed 350 to 400 m/sec (figures still not
reached up to now), V may be considered as ranging between O and
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compressor certainly does not exceed 0.85. On the other hand, the
speed wp cannot be cancelled and must maintain a certain value to
assure the volume of the rockets with moderate sections of passage.

When these conditions are taken into account, it is easy to see
that a compression ratio Ap of the order of 3 for a single stage of
compression is practically the limit. '

Consequently, the thermal efficiency of the system is limited to a
value, which, theoretically and according to formula (91) where 7y = 1.35,
cannot exceed 0.245; and the inevitable irreversibilities of the reali-
zation reduce this figure even more (by one-fourth at least).

The system of single propeller actuated exclusively by reaction
is condemned by this fundamental defect.

57. Second type of propeller actuated solely by reacfion: driving
system attached and independent

A. Integral cycle.- In this case the active bodies go through the
same cycle and effect their passage across the machine along the same
path. :

The cycle is represented on a diagram (p,_l), or Clapeyron
diagram (figure 42).

In the ideal or theoretical machine, this cycle comprises: the
irreversible and adiabatic compression ab, from pgz to pp; the
adiabatic and complete combustion bc, at constant pressure p. = pp;

the reversible adiabatic expansion ce, from p. to pg = Pg- In the

so-called motive system is effected the part abcd of the total cycle,
the expansion of which is arrested at pressure pg so that the effec-
tive energy of this system is zero. The rest of the cycle, that is,

the complement (de) of the expansion, is effected in the rotating system
which does not receive the mechanical energy of the attached system and
consequently permits of no mechanical connection with the latter.

In the real machine, the cycle differs from the theoretical cycle
abcde by reason of irreversibilities of every nature (effect of walls,
residual gases, friction, leakages, etc.).

Now it is proposed to calculate the thermal efficiency ny) of
the real cycle in probable or-admissible conditions.

Two principal forms of realization can be conceived, depending on
whether the motive or attached system which produces abcd, is of the
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reciprocating type (balanced pistons engine) or of the rotary type
(balanced internal combustion turbine). In any event, the complement
de of the cycle is realized in the gas turbine which constitutes the
rotating system.

(a) Case where the motive system is of the reciprocating type.-
Incidental to the calculations summarized in table XIV, it is stated
(by neglecting the kinetic energy of the air at its entrance in the
motive system as in the cited calculations - this approximation is
admissible here as long as the speed of propulsion V does not exceed

150 to 200 m/sec) that at compression ratios Ag = Ap = EE of the

Py
order of 15 to 45 the real exhaust temperature Tgq' (at constant pres-
sure pg' = xd'pa) of the reciprocating engine shifts from 22350 to

about 975° when the dilution « passes from O to 3, that is to say,
when the corresponding excess of air in the combustible mixture
increases from O to 300 percent.

On leaving the engine, the gdses circulate in the pipes which con-
vey them to the rotating system. Since all these parts are practically
at a steady state, it is imperative that the temperature of the gases

be not excessivel9 and, on comnsidering a temperature of 7OOO C as prac-
tical limit, it is seen that a dilution o of at least equal to 3 must
be visualized.

This is the value chosen. With Cg" (cf. table XIV) as the theo-
retical energy of the reversible expansion beginning with the conditions
(pg', Tq') of the exhaust of the real engine and pg" as the efficiency

of expansion with respect to the reversible.adiabatic, the thermal
efficiency mnyy, defined by formulas (4), is expressed by the formula

pdngdn
Th = —1 (173)

The efficiency of expansion pg" 1s not identical with the specific
expansion of the exhaust pipe system + rotating system, considered as a
turbine. Tt differs from it by the fact that the kinetic energy
remaining in it is excluded from the losses. Therefore, a fairly high
value for pg", such as pg" = 0.90 for example, can be chosen,

l9This reservation is not formulated for the liquid-fuel rocket
because, for its expansion nozzle, a realization assuring a good behavior
of the nozzle (or its convergent part which is very short) can be
envisaged in spite of temperatures above 700O C over a little extended
zZone.
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In these conditions the efficiency mntp assumes the values
indicated in table XXVI. '
Table XXVI
Mixture very diluted: a = 3 rotating system: pg" = 0.90

Losses in the engine computed as in table XIV (1 = 0.10)

Pc .Tb' T' Cy' Tg' Py’ Ea" O'an"
o | (deg) |(deg)| (cal) |(deg) (cal)

15 661 {1314 |5508 | 971 3.85_ 4750 0.372
30 803 |1hke7 | 7340 | OTH 5.32 5385 R3]
L5 903 |1514 | 8808 | 973 6.015 |5732 J4h9

According to this table, the efficiency Ny at a compression

ratio A, ranging between 15 and 45 ranges between 0.372 and O.hh9,
values which are considerably higher than the thermal efficiency of the
ordinary airplane engine (0.27 approximately) and even of the best
heavy-oil engines (0.36 approximately).

It is noted that, on comparing the above 17, values corresponding
to real machines with the corresponding values for the theoretical or
ideal machine given by table XIII, namely, 0.517, 0.611, and 0.664, the
specific efficiency of the real machine, that is, the ratio
(1ith) reg1 /(M) tneopreticgls FEN8ES between 0.72 and 0.675, which values

are plausible and entirely admissible.

The envisaged type of machine appears therefore distinctly
interesting. Its practical realization, however, raises certain
difficulties, which are briefly outlined.

When contemplating the realization of the cycle abcd (fig. 42)
in the same cylinder, allowance must be made for the free space which
increases the losses (by residual gases) and diminishes the volume of
the active bodies consumed by the piston stroke. Besides, the volumes
in a and d are not equal and the piston must have unequal strokes
(the engine operating evidently at four cycles) or else the intake
closes (or the exhaust opens) before the piston reaches the bottom of
the stroke.
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To avoid these drawbacks, this cycle can be contemplated to realize
in two twin cylinders operating at two cycles, with transference at the
end of compression and with the free spaces restricted to a minimum.
This arrangement presents obvious advantages, but at combustion the
cylinder operates permanently at high temperatures, although reduced
by the dilution a = 3 adopted above.

Notwithstanding these objections or reservations, this type of
machine merits to be retained.

(b) Case where the motive system is of the rotary type (turbo-
machine).- Here a high degree of dilution is evidently indispensible,
as for all turbomotors with internal combustion whose real operation
is supposed adiabatic as completely and perfectly as possible, along
with a moderate compression ratioco A, in order to lower the tempera-
tures on the blades of the turbocompressor and of the expansion turbine.

As in the study of the turborocket, article 30, a dilution o = 3
and a compression ratic Ac of the order of 10 to 15 is adopted; For
the turbocompressor efficiency pg, an extreme value ranging between 0.7
and 0.9 is contemplated; for the efficiency of utilization r of the
(primary) expansion turbine which actuates the turbocompressor, a value
of the order of 0.75 to 0.85 is assumed. Lastly, the efficiency pg"
(the remaining kinetic energy not counted as loss) of the secondary
expansion turbine in the rotating system and in its pipes is allowed
for at 0.90. '

On these premises, the thermal efficiency ntn of the complete
thermal cycle reaches the values given in table XXVII and which are
to be compared to those of table XVI (with pg" = 0.95 instead
of pg = 0.90).

Table XXVII

(@ =3 Ty =288 pg" =0.90)

g Pa r th
10 0.9 0.85 0.352
.75 . 302

.8 .85 . 323

.15 .268

7 .85 .285

T .219

15 .9 .85 375
.15 .310

.8 .85 .340

.75 267

7 .85 .298

.75 .215
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The continuously pfogressing'turbomachine technique does not
permit immediately to envisage more favorable conditions_than

I

A. = 10 py = 0.8 r = 0.8

or

A =15 Pg = 0.75 r =0.75

In these conditions, the preceding table indicates that ‘the effi-
ciency 714y does not exceed O. 28 to 0.23 and consequently will be less
than that of good internal combustion aircraft engines and much below
that of fuel-injection engines.

Hence the type of machine visualized is predicated upon the premise
of considerable progress being-made first on the specific efficiency
(pa and r) in the utilized turbomachines.

58. Case of divided cycle

The motive system is joined to the rotating system which produces
no effective energy, by means of a normal engine which drives an air
compressor designed to feed the rotating system. In this arrangement
the combustion of the mixture intended for the rotating system is no
longer effected in the attached system. o

It can be secured either in fixed combustion chambers located
between the two systems or in the rotating system itself and then pref-
erably in chambers disposed over its periphery.

The essential difference between these two conceptions is that, in
the second system, the arms (or links) of the rotating system cannot be
utilized as centrifugal compressors and so permit increasing the com-
pression ratio of the air which arises from the compressor actuated by
the auxiliary system.

As long as the speeds V and U are not excessive, the energy
of compression of the rotating system remains small compared to that
demanded of the attached system, it being known that a total compres-
sion ratio A, of 10 to 15 must be reached to assure a satisfactory
cycle. On the other hand, the difficulties of installation and opera-
tion of the compression chambers rotating at a high speed U make the
first method preferable, in theory, and which is therefore considered
here and its efficiency Mth evaluated.
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Cg = theoretical energy of compression of the air destined to burn
1 kg of fuel in the principal system, the compression effected according
to a ratio A, determined by the extreme pressure Aic = pc/pa '

Py = specific efficiency (with respect to the theoretical adia-
batic) of the compressor driven by the auxiliary system

Cq = energy of the theoretical expansion from p. to pg,, starting
from the state in which the gases are introduced, after real compression,
by complete and adiabatic compression (to which the real combustion,
sufficiently exact in the case in point, is assumed comparable)

py = efficiency of the real expansion which is effected-starting
from the fixed combustion chambers and completed at the outlet of the
rotating system

Ca' = otlq, the thermodynamic energy of the.real expansion

Nm = thermal efficiency of auxiliary system assumed to consume the
same fuel as the principal system

aV2

Lastly, Wy = = the initial kinetic energy of the mass of air

. . 2g
considered (a = ratio of mass of air/fuel.

The compressor efficiency pg being assumed evaluated under actual
operation conditions at speed V, the effective energy Cz' absorbed
by the compressor is

and necessitates the consumption by the auxiliary system of a quantity
of fuel (in kg) equal to Cg'/mpl. which is additive to the fuel con-
sumed in the same time interval by the principal system.

The effective energy of the complete thermodynamic cycle is
Ca' = ptCq (3); therefore, to obtain the thermal efficiency nmygp of
the thermodynamic cycle under consideration it is sufficient to refer
this energy to the heat value of the fuel consumed (1 + Ea'/nmL).
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Hence

_ TmPaPftCqd . (174)
Mth = V2
- a r + nmpAL

—a

which can be reconciled with formula (97).

. Allowance for the initial kinetic energy of the air supplying the
- compressor of the principal system introduces in the denominator of

Ny the term (Ta %? which brings out the beneficial effect of the

increase in speed V. It further will be recalled that the specific
efficiency pg ©of the compressor itself depends (but in a rather small
measure, especlally when a well-adapted turbocompressor is involved) on
the speed V at entrance in the orifice of the compressor.

Moreover, in the foregoing expression, the efficiency pt (called
the efficiency of the real expansion) represents (if desired) the spe-
cific efficiency of the expansion turbine formed by the rotating system,
provided that the remaining kinetic energy of the gases at the turbine
exit are not included in the losses of the latter.

Assuming that this turbine has a single-rotor playing the part of
a rotating distributor and, that, consequently, the losses due to shock,
eddies, and friction are reduced correspondingly, the preceding remark
leads to envisage a rather high value for the pt 1n gquestion. Granted
that this value could range between 0.90 and 0.95 the lower limit
pt = 0.90 1s systematically adopted to compensate for the effect of the
various losses of the complete system (notably the loss through incom-
plete combustion and adiabatic deficiency of the system).

For the efficiency pg, the values therefore range between 0.7 and
0.9, which holds for good compressors whether of the piston or the
rotary type. IFor the compression ratio A., the uniform value of
Ac = 10 1s assumed, with a dilution o = 3 and standard initial tem-
perature Ty = 288°. For the thermal efficiency Tn ©f the auxiliary
system, the constant value of 1y = 0.27 which corresponds to the
better modern aircraft engines is adopted. '

In these conditions and on the basis of the values of (C, and Cg
given in table XV, formula (173) permits nth to be computed for
different values of pg and of speed V.
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The data obtained are represénted in table XXVIIT and plotted in
figure 43. '

Table XXVIIT

(Ae = 10 a =3 T, = 288°
g, = 0.27 py = 0.9)
A
Pa , (m/sec) th
0.9 0 0.316
150 .323
300 .350
.8 0 .302
150 .310
300 .335
T 0 .287
150 .295
300 .322

Note the appreciable improvement in Min (pt and Py, being

fixed) when the speed V Dbecomes very high. At speeds below 150 m/sec,
this improvement is altogether secondary.

The decrease in T4y at decreasing p, 1is rather moderate and
that takes account of the fact that the efficiency of expansion pg
in the rotating system, an efficiency which is assumed constant, has a
rather high value (pt = 0.90).

For a piston compressor, pg vVvalues up to 0.90 can perhaps be
visualized. For rotary compressors, however, it is prudent not to
discount pg values higher than 0.75 at a compression ratio of the
order of 10 as above.

Finslly, it is seen that, for the systems involved (propellers
driven exclusively by reaction and with-a compressor geared to auxiliary
system), the efficiency n4p of the complete thermodynamic cycle could
practically reach values of between 0.295 and 0.320, the mixture
utilized by the propeller permitting a corresponding excess of air of
300 percent (a = 3).



59. Recapitulation

The study, developed in the preceding three paragraphs (55 to 58), of the several visualized
propeller systems driven solely by reaction is summarized in the following table XXIX.

6G2T WL VOVN

Table XXIX

Value 14y Dpractically|Compression ratio Ag
Type of systenm obtainable visualized

Unsatisfactory because
Type I: Propeller isolated of insufficient Unsatisfactory
compression '

/
a. Balanced

englne
A Reciprocating
Integral cycle type
b. Balanced
Type II: turbomotor
Propeller with
attached
system

0.37 < Myp < 0.45 15< A< b5
0.23 < 7th < 0.28 10 < Ac < 15

Compressor
driven by
B auxiliary
Divided cycle engine of
standard

type

0.295 < Mth < 0.32 Ao @ 10

L

The limits indicated correspond to satisfactory systems (engines, compressors, turbines)
such as those already in existence or apparently easily obtainable. In all of them the dilution

of the fuel mixture was fixed at o = 3, that is, a corresponding air consumption of a = 58.8
for the fuel in question (Rey kerosene).

ENT
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The foregoing table shows the superiority of the systems of the
type (A/a), although certain manufacturing difficulties may be encoun-
tered (cf. article 57/a), as well as the weight and bulk which might
‘result, for a reciprocating machine of this type, as a result of the
large excess -of alr (a = 3) necessary for the mixture in the cycle.

It is known, from the general discussion in article 51, that a
high propulsive efficiency 'r]E is obtainable with a propeller driven
er

solely by reaction and charac ized by h = 0. This is very clearly
shown in figures 35 and 38.

Nevertheless, the high values of nyp, obtainable according to the
above table, favor the over-all efficiency ng = nth X np, which con-
stitutes the criterion of appraisal of propulsion systems.

The most favorable (A/a) system is discussed on a model problem.

60. Special study of the several efficiencies of the propeller driven
exclusively by reaction, in the most favorable case

The most favorable (A/a) system is characterized by

Ao = U5 a = 58.8 = 0.5

th

The heat value L of the (Rey) kerosene is (in M.K.S. units)
L = 48,000,000

hence

_ ™l 367,000
B aV2 - V2

On admitting that V does not exceed 300 m/sec (1080 km/h), the
parameter Q remains above .08, and, as is easy to verify, the

a ; L _ gg'g = 1.017 can be compared to unity for the

calculation of the several efficiencies.

quantity & =

In these conditions (with h = 0), which characterizes the jet
propeller, taken into account, the formulas (153) and (154) give

p = Mg = %(l + Th tan28;>[gi + 2Q COSEBe - i_l (175)

with tan Be = Ue/V, Ue denoting the peripheral speed of the exhaust
sections in the atmosphere.
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On the other hand,'the over-all efficiency ng, is by definition
= T]th X Tlp

Quantity Q depends only on V and, by formula (175), p depends on
Q (or V), Us, and T1pn, the propeller efficiency.

For the latter, a constant value of 0.75 is assumed; Ug 1s varied
from O to 400 m/sec, and V from O to 300 m/sec.

The results are shown in table XXX and plotted in figure Lk,
Table XXX

Values of o, and of g (nth = 0.45; ny = 0.75)

Ue (m/sec)
e
7/ N\
0 50 100 200 300 400
V = 100 [np = | 0.207 0.218 |0.245 0.323 0.398 | 0.465
(m/sec) Ng = .093 .098 .110 ks 179 .209
Np = .370 374 .3825 4175 .L463 .507
V = 200
Mg = .167 .168 172 .188 .208 .228
Np = Lot .500 .503 .5175 .536 .562
v =300 ng = | -22% | .225 | .226 2325| .oml | .2%2

Figure 44 also shows the propulsive efficiency (n = nn) and the
over-all efficiency (ng = Nh X Nth) of & normal englne-propeller combi -
nation utilizing the same propeller (ny = 0.75) and permitting an inter-
nal combustion engine, or a heavy-oil injection engine, that is, power
plants with an anticipated thermal efficiency equal to 0.27 or 0.3h4,
respectively. A constant value nn = 0.75 was adopted for the particular
propeller efficiency irrespective of Ue and V, which assumes the szid
propeller adapted for each case in the best conditions. Besides, it
will be more correct to concede a certain decrease in 1 when the

. 2 2)1/2 . . .
tip speed (Ué + V becomes very high, that is, hlgher than

300 m/sec. This known decrease in propeller efficiency on approachlng
sonic velocity was disregarded here for reasons of simplicity.
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The diagram of figure ULl proves that within the present practical
range of Ug = 300 'and V = 200 m/sec:

. (1) The propulsive efficiency np of the jet propeller is seen
to be considerably below the efficiency 1y of the regular propeller.

(2) The propulsive efficiency Np increases with the speed V,
the peripheral speed Ue being assumed constant.

(3) 7 increases rather slowly with Ue, V being fixed, and
passes through a minimum for Ue = O.

(4) The over-all efficiency g ©of the jet propeller reaches, at
extreme values of Ug and V, the value corresponding to a normal
engine - propeller system.

The conclusion is that, as long as V does not exceed 200 m/sec,
and Ueg 300 m/sec, the contemplated system remains inferior to a stand-
ard system of propulsion in spite of its high 14, and its high dilu-
tion (a = 3), at least for speeds below 200 m/sec.

61. Notes on the internal efficiency of the gas turbine

Figure 44 illustrates the relatively slow increase of mn, with Ue,
for given V. This fact calls for an explanation because it may be
surprising at first glance. It is, as will be shown, intimately related
with the fact that the internal efficiency of the gas turbine does not
attain high values except at high rotative speeds.

In the case of the propeller driven exclusively by reaction, the
rotating system can be regarded as forming a gas turbine of the centrif-
ugal type and with helicoidal ejection, which drives the propeller the
blades of which envelop, in reality, the moving channels of the said
turbine.

According to this point of view, the effective horsepower of this
turbine on its shaft balances the power absorbed by the propeller. The
thrust horsepower consists of the propeller thrust T (fig. 45) and of
the axial component Ty of the reaction Rf supported by the turbine
and due to the ejection of the gases. These two portions can be
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distinguished in the propulsive efficiency nPEO by bringing out the

role played by the Internal efficiency of the gas turbine formed by the
rotating system.

Before presenting Np in this form, it is well to remember how
the internal efficiency og the gas turbine is defined and evaluated by
the conventional turbine theory.

Consider a gas turbine, with a single rotor, with central admis-
sion and peripheral exhaust, and for greater generalization, admit that
this system (fig. 45) is actuated by an axial translation at speed V,

"~ s0 that the resultant We of V and Ue, inclined at PBe with respect
to the axis of rotation, is opposite to the corresponding speed we
(with respect to the rotor) of the gases at their discharge.

Let M be the volume by mass of the turbine, d the initial state
(pg, Tg, Wg = O)yand e the final state (py, To, we) Of the gases

passing through the turbine, and U and Y the internal energy and
volume. of these gases referred to unit mass.

The adiabatic expansion, reversible and very slow, effected from
Pqg tO Dpe, conveys the gases from state d to a certain state

E(pE’ TE).

As usual, we put

va2

W+ W)y - (s p)p -5 =gl (176)

The thus-defined gquantities H and vy represent what is called the
"head" and the "theoretical velocity" due to this head, of the turbine
in question.

20In the case of the true jet propeller (h = O) considered here,
the efficiency 7 given by the gemeral formula (175) is reduced to
the term nr calfed the propulsive efficiency of rotating rockets. It
is purposed to recall, that, acting directly through the component Tr
of its reaction or, indirectly, through its peripheral component which
the propeller transforms into thrust, the Jjets are the sole motors of
the propulsive system.
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- In the actual expansion, from state d to state e, numerous
irreverslbilities intervene, as well as more or less important exchanges
of heat with the outside.

Let Qpt be the total heat transferred by the turbine in question
and per unit of consumed mass, on the outside; this quantity Qpy
comprises, in particular, the heat of mechanical friction, the bearings
being incorporated in the turbine.

Quantity

C=(U+pV¥)g - (U+pV¥)e - Qpy (177)

may be called the "effective energy of expansion" (de).

The ratio of effective to theoretical energy, denoted by Pg» that
is

2C (U + Vg - (U + p¥)e - Qrt
P~ 2 ) (U+pV)e - (U+.pV)g (178)

is conveniently called the efficiency of the real expansion (denoted
by pg in formula (173)), but should not be confused with the "internal"
qQr the "specific" efficiency of the turbine. .

Quantity Pefr 1s the effective horsepower at the transmission
shaft of the turbine operating at head H, that is, with the theoretical
horsepower (Mg H).

The specific efficiency pt of the real turbine is, by definition,
the ratio of the real to the theoretical horsepower or

_.Beff “Eers

I T G (179)

The internal horsepower P31 of the turbine being its effective power
augmented by external losses (by external friction and leakage) symbol-
ized by the term ®&gMgH, the internal efficiency p31, or as it is some-
times called, hydraullc efficiency, is the ratio of internal to theo-
retical horsepower, that is

P P
=1 =eff _ —
PL =~ Wz & - Mg & + e = pt + e (180)
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On the other hand, on a turbine with a single rotor, p1 is
expressed by

Py = —25 (au - a'a') (181)
A{¢)

u and u' denoting the peripheral speeds of the moving rotor at the

mean radius of the sections of inlet and discharge, a and a' the

projections in the peripheral direction of the absolute speed of the

fluid at inlet and discharge.

In the case of the gas turbine with central admission and sensibly
axial flow (a and u always zero or quasi-zero in every section of
the inlet) and tangential and oblique discharge (fig. 45), formula (181)
gives

2Ue(We sin Be - Ue)

P (182)

1 V02
In this study, the loss at the joint (i.e., at the inlet in the rotating
system) as well as the losses due to the mechanical friction of the

shaft in its bearings are neglectedgl. Accordingly, when it is con-
venient to reckon the horsepower absorbed by the friction of the rotor
in the ambient fluid as effective horsepower, the external losses dis-
appear, the specific efficiency pg is coincident with the internal
efficiency pj according to (18), and by (179) and (182) we get

Vo2 Vo2 )
Eerr = ogM 5= = pM 5~ = M Ug(ve sin B - Te) bieg!

On the other hand, the application of the principle of the conservation
of energy to the turbine and to the elements which it contains, during
the time unit and in ratio to the axes in absolute translation with the
fixed part of the turbine, yields the relation

. 21 The escape of the active bodies has been consistently disregarded:
It is of little significance. in good heat machines and can be allowed
for by slightly underestimating the thermal efficiency in systematic
manner, when its probable value is evaluated.

The bearing friction had not been considered in the rotating system
of figure 3&, the said system being considered as cantilever construc-
tion and its bearings as belonging to the attached or motive system.
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» , 2 "2
Wwe= + Ue” - 2wele sin Be
ML(_Q+ g - (W+ V) _QRE] = Fepe + M 2

or by definition (178) of the real expansion efficiency pg

2 2 2 _ .
VO . Ve + Ue 2WeUe sln Be
Perf =Mpg 5 - M > (184)

Consider the head H (i.e., the speed vg) as given along with the
efficiency pg (which depends only on the changes of state of the
active fluids and their thermal exchange with the outside) and put

V/vp = ¥ = speed of the turbine in axial translation
U./vo = @ = rate of rotation
we/Vo = X

By (183) and (184) .
x =\[pg + 92 (285)
a relation which shows that we Increases indefinitely with Ug -

Entering this Walue of X in (182) gives

2
pg *+ @

e e (186)
AR

which expressés the internal efficiency py of the gas turbine (without
Joint loss) as a function of pg, ¥, and Q.

For a gas turbine at a fixed point (turbine fixed, ¥ = 0), this

expression is reduced to ]
pL = ECDI:\fpd + Q2 - QZ] *(187)

In the general case, formula (186) shows that p; +tends toward
@d = wg)'when @ increases indefinitely.

It is easily checked that p3 increases constantly with .
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Besides, table XXXI gives the value of p; for different values
of ¥ and 9, when pg 1s successively assumed equal to 0.9 or 0.8.

o . Table XXXI

Internal Efficiency p3 of the Gas Turbine

Pqa | ¥ ® =0 0.5 1 2 4 3

0.9 ] 0 01

0O { 0.57T2 |0.758 | 0.852 | 0.880 | 0.9

.2 o] .hgs .T02 .800 .82 .86
n 0 .338 .560 .680 .730 e
810 0 .525 .684 .76k T76 .8
.2 0 451 .632 .720 .70 .76
on 0 . 300 Lo .584 .635 .64

The results of this table are shown plotted in figure 4622, They
indicate very plainly the necessity for high speeds of rotation of the
order of 1 at least, in order to obtain a beneficial efficiency pj,
especially if V¥ 1is appreciable or pg is low.

The data given for the gas turbine are readily applicable to the
true Jet propeller described above.

For this system, if the rotating unit is considered as a gas turbine
of the impeller type (in translation, at normal operating speed
¥ = ¢/tan Be), the effective horsepower (this includes the power
absorbed by the friction of the rotor in the ambient fluid, that is,
the friction of the propeller blades in the air) of the turbine repre-
sents the power Pp absorbed by the propeller, which gives an effec-
tive power of propulsion

2
V,
(Bu)y = ThV = nyPert = NpoyM —— (188)

On the other hand, the axial component Ty (see fig. 45) of the

reaction Ry supported by the rockets supplies an effective power of
propulsion '

22These curves have not been extended as far as the origin, where
they fit tangentially to the axis of abscissas, in order to avoid the

confusion of the curves in this zone resulting from the much-reduced
design scale.
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(Pu)p = TpV = = =Py 3 M7 (189)
The mass volume M of the turbine (m = volume of fuel, a = corresponding
volume of air) is
M=m(1l+ a)
The total effective power of propulsion TV 1is, by (188) and (189)

TV:ThV+TfV= plqh+pl$—2—>-m(l+a)—§—

and the propulsive efficiency 17, by definition (9) is
p

N, = {190)

v _ (l + a)V02 \Vg
P mqthL EnthL

P1Mn * P1 42

Quantity ntp can be connected with vO2 by noting that, by definition
of mn¢hp:

Nipl = (U + pV), - (U + pV)e - &R (3)
(the mass of combustible mixture including the unit of fuel mass being
taken for reference term) and by (178) gives

2
(U + ¥)g - (T+ PW)e - gy = oall + 8) > (191)

lastly, by applying the principle of the conservation of energy between
the states a and d to the balanced system attached to the rotating
system

(U +p¥), - (U + V), - Qg = -8 = (192)

(3) gives after reduction .

_ ave \ 1 '
) (l ' 2%1@)@ - [GeEl

VAl

- 1 + a
( ) 2ntnl
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Given V, 7y, and pg, this relation is used to compute V,. Applying
this expression to (190) gives the propulsive efficiency in the desired
foxm ' )

. _ o . o
L 1 v
= 50+ B E) ()
P
which is none other than formula (175)23.
By way of illustration, take the system studied in the preéeding

article (table XXX and fig. 44) for the particular case V = 200 m/sec,
Mep = 0.45, np = 0.75, a = 58.72, L = 48,000,000 (in M.K.S. units)

Assuming the efficiency of expansion pg in the gas turbine equal
to 0.90, formula (190) gives vy = 920 m/sec. The speed
¥ = 200/920 = 0.2175 and the propulsive efficiency np is, by (194),

o.ou73)
np = 1.171(0.75 + —Z /)

with, by (186)

5
0.9 + @
o =22(,’————-1)
1= 0.0473 + @°

Thus by varying ¢ = Ue/v, between O and 0.5, the values of p1, NhO1,

2

!

pl.EE’ and np were obtained and posted in table XXXII.
P

23Formula (175) permits, however, an spproximation not utilized

above. The ratio was actually compared to unity. This

simplification is entirely legitimate, as will be shown later on.
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Table XXXII
Propeller Driven Exclusively by Reaction.

V = 200 m/sec ngp = 0.45 71 = 0.75 a = 58.72 vy = 920 m/sec

¢ =U/vo - - O 0.1 (0.2 0.3 |04 [05 .
Ue m/sec . . .J O 92 184 276 368 460 ®
pl.. 0 0.0597]0.1825|0.3035{0.4035| 0.483 0.853
NPy - 0 0.0478 o.1367+o.227h 0.3024 0.3622 0.64
Y; p1 - - - .}0.318 |0.282 |0.2156{0.159 [0.1193|0.0911 0
P

2
<Ph + g§)pl. .10.318 [0.3298|0.3523]0.3864{0.4217| 0.4533 0.64

Np - .1 0.3725{0.3862{ 0.413 [0.453 [0.49k [0.531 Mp = Ty = 0.75

The above values of 71p are in good agreement with those in table XXX
and were calculated by the approximate formula (175) in which the ratio
1+ a)/a = 59.72/58.72 = 1.017 is compared to unity. The difference
does not exceed 1 percent, hence Justifies the approximation for sim-

plifying (175).

The results of the preceding table are plotted in figure 47. The
relatively slow increase of np with Ue 1s the result of the slowness
with which the internal efficiency p3 of the gas turbine increases
with the speed of rotation ¢ = Ug/vg of this system.

62. Jet propeller realizing the best combination of driving and
rotating system

As 1ndicated at the end of article 5k, the optimum mixed system,
that is, giving the most advantageous combination of primary and
rotating system, is now considered.
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It is possible to determine (cf. article 50) the value hp of the
coefficient of division h, which, for a given value of the parameter

Q = N4y L/&Ve, gives the maximum of the propulsive efficiency n, a
maximum which 15 then easy to calculate. ' '

In order to study, by exact examples, the results that may be hoped
for from this optimum mixed system, the question actually involves the
determination of the best probable values of the thermal efficiency mnyp
of the cycle as well as the corresponding values of Q.

Having discussed at length the case of a mixed cycle (article 53)
which involved a normal airplane engine, a revolving exhaust supplied
by low or high pressure with respect to the normal exhaust pressure of
such a system in (53), there remains the case of a cycle comprising, in .
theory, a combustion at constant pressure, inserted between the pre-
liminary compression and a subsequent continuous expansion, both
adiabatic, a cycle defined in (54).

Obviously all systems of the so-called balanced type, (articles 56
to 60) studied previously on the true jet propeller, can be employed
here on the condition of recovering in the engine an additional portion
of the expansion of the burnt gases in the form of effective mechani-
cal energy that is transmitted by the said engine to the rotating
system, the portion which 1s extracted at the actually produced expan-
sion in the rotating system.

It is therefore immediately seen that, at preliminary compression
and combustion produced in identical conditions, the second system gives
a higher or lower thermal efficilency n¢) than that of the first,
depending upon whether the efficiency of expansion2 of the supplemen-
tary expansion produced in the system 1s higher or lower than the value
which 1t has when this expansion is produced in the revolving system.

In this last case, the truly optimistic value, pg = 0.9 had been
consistently admitted. It certainly is not possible to visualize a
higher value for the same portion of expansion in the case where the
latter is realized in the system itself instead of in the revolving
unit. o

This expansion efficiency could even be reduced to 0.85 or more
when the engine is of the reciprocating type, and to 0.80 or more when
of the turbine type.

241t concerns here the efficiency of the real expansion as defined
in (61) and, in particular, by the general formula (178), state (d)
and (e) denoting the extreme state of real expansion under consideration,
that 1s, in the present case, of the partial real expansion.
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In these conditions (cf. table XIX) the conclusion is reached
that, depending upon whether the coefficient h passes from zero (pro-
peller driven by jet exclusively) to one (propeller driven by engine
only), the values of mny), indicated in this table, must be multiplied
by a reduction factor ranging between 1 and 0.85/0.90 = 0.945 (recipro-
cating engine), or between 1 and 0.8/0.9 = 0.89 (turbojet), the values
of the compression ratio A. and of the dilution o remaining
practically the same.

For the previously cited reasons (increase in volume and decrease
in the temperature of the gases in contact with the components in con-
tinuous rotative motion), the most favorable dilution o to be retained
appears to be of the order of magnitude of 3, that is, for the Rey
kerosene, & corresponding air volume of the order of 60 (o = 3 corre-
sponds in fact to a = 58.72).

In these conditions, it is seen that, if propulsive speeds of more
than 200 m/sec are excluded and the best thermal efficiency Nth Sus-
ceptible to give the best over-all efficlency Mg = Mth X Tp is

retained, that is, an 7y, of the order of 0.45 to 0.425 (if h passes

from zero to unity), the minimum of the parameter @Q to be visualized
is of the order of

Tth X L (0.45 to0 0.425) x 48,000,000
xR 58.72 x 200 % 200

or of the order of 9.21 to 8.66 (h varying from zero to unity).

Formula (163) shows then that the corresponding maximum possible
improvement of propulsive efficiency with respect to that of the pro-
peller (which is the propulsive efficiency of the propeller driven by
the engine exclusively, the exhaust being fixed, having but a negligible
propulsive effect as in standard engine-propeller systems) does not
exceed

2 ;
_70.3 1 B
A = (O.7> 5% B%E " 1.06 percent

which is entirely negligible.

It is therefore superfluous to seek the best combination, which is
practically very near to the standard engine-propeller system (fixed
exhaust), and which without appreciable benefit, introduces the compli-
cations and difficulties inherent in a revolving exhaust.
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Returning to the turbojet, there is some hope of being able to
realize complete expansion (specific advantage of the internal combus-
tion turbine), the great dilution (o = 3) remaining, moreover, indis-
- pensable. - But the thermal efficiencies obtainable drop then to values
of the order of 0.24 to 0.25 meximum, which is below that of good air-
plane engines (0.27) and considerably below that of fuel inJection
engines vwhich can reach 0.36.

63. Optimum orientation of exhaust jets

In the study of the general system represented in figure 34, it
had 'been admitted that the exhaust of the rockets is exactly alined
along the absolute speed of the center of the dlscharge opening of
these rockets, which describes a helicoidal trajectory.

It is expedient to investigate this orientation, in order to
obtain the most advantageous orientation, that is, the maximum
propulsive efficiency Mp-

Consider figure 48, in which the inclination 7e Of the exhaust
jet of a rocket (equivalent to the cluster of rockets disposed around
the axis of rotation) is different from the orilentation Be of the
absolute speed of the said rocket.

To reconcile the free flow that flows around the envelope of the
rocket with the Jjet that leaves the latter, it is necessary to give this
envelope a somewhat special form, such as that indicated by figure 48,
for example.

It should also be noted that the angles e and 7e could be

different from each other without entalling a considerable development
of the envelope and an aerodynamic resistance of the latter that can no
Jonger be Jjustly neglected, as stated before and as applied to what
follows.

To allow for the angle 7e, simply revert to the calculations in
articles 44 to 47 and replace Bg by 7e every time the inclination

of the corresponding speed of exhaust appears.

Thus formula (140) becomes

2
. A')
Nyl = (wez + Ue2 - 2Ug Wg sin 7é)- 25— (195)

1 1l + s
a Chwh + 5

vwhile formula (141) can be written as

T=T, +m|(l + a)w, cos y. - aV (196)
h e e
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Lastly, formula (14Y4) modified, becomes

L Cpwp = Bngpl + (1 + a)(ve - We) sin 7ele (197)

Therefore

Ve sin ye sin Be
Xe = 5 = \/E tan® Be - COSEBe (198)

Finally, by the definition (9) of Mp, this efficiency can be expressed
by the formula

np = hny + % (cos 7e + nh tan Be sin 7e) X

\[l + aE_ + 2(1 - h)Q] (l_*'_§> tan Be[zz g: - ]Z]_

(199)

(l + My 1

which corresponds to formula (152), when 7o = Be.

According to a legitimate conventional approximation, (a + l)/a
is compared to unity; hence the preceding formula becomes

1 o sin 7e

Np = hny, + Q‘Xe COS 7q (1 + np tan“Be tan 7e) - <l + My tan® Be S e

e
(200)

with
2 gin
Xe = v& +2(1 - h)Q + taneﬁe(_EEE—EZE = l) (201)
e

formulas which permit the same approximations to be made as those used
~in the preceding numerical calculations and which can be obtained alsdo
by making & = (a + 1)/a = 1 in formulas (150) and (152).
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It should be remembered that the formulas (200) and (201), in-
which the aerodynamic resistance of the rockets is not taken into
account, may permit an insufficient approximation in the case where the
angles B, and 7y, differ considerably from each other.

64, Application to the specific case of the propeller driven exclusively
by reaction ' :

With formulas (200) and (201) and by making h = O, the case of
the propeller driven exclusively by reaction is obtained. Supposing
that np, Ngp, Q, and tan B, are given and the problem is that of

finding the optimum value of tan Be, that is, that which gives, in the
conditions considered, the maximum np'(and at the same time, ng).

This value of tan B, should cancel the derivative of p with
respect to tan ye, this quantity being taken as sole variable in (200).

The looked-for wvalue is then found as the root of the equation

o 1 + tan“Be
tan Bo (1 - tany.)(1 + 7y, tan B tan 7, —
1 + tan®y,

XeMp tan Be<xe - \L o+ tanzBe) - xg%tan 7o = O (202)

Xe being expressed by formula (201).

It is readily seen that this equation cannot, as & rule, be solved
very easily, and requires a special study in each particular case. In
consequence, we return to the particularly interesting case contemplated
in article (60) (table XXX, fig. 4k4) and corresponding to

Tgp = 0.5 7y = 0.75 V=200 m/sec Q=9.21

Rather than solving (200) for different tan Pe = Ue/V, it is more
convenient to compute Tp for different values of tan 7y, and in each

case, for different values of tan Be by (200) and (201).

The results are represented in table XXXIII and figure Lg.
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Table XXXIII

Propeller Driven Exclusively by Reaction_(nth = 0.45; n, = 0.75;

V = 200 m/sec; Q = 9.21) Rockets with Variable Orientation

Values of Np

e
CER e =0T g s 1 1.5 2
Ue =0 100 200 300 100
m/sec
tan 7, = O Np = 0.370 0.367 0.358 0.3k 0.318
0.5 .319 .38 43k 465 AT
1 .229 .330 16 .483 .527
1.5 .156 .276 .378 62 .52k
2 .105 .230 .3%0 430 .507

Figure 49 shows the efficiency curve np ©of the propeller with
normally orierited rockets, Be = 7o, studied in article (60).

The envelope of the curves (tan Ye) 8ives the maximum Tp for
each value of tan B,, or U,, and the corresponding orientation 7y, 1is

the quota of the curve which touches the envelope at the point under
congideration. .

An examination of this figure shows that a certain improvement
could be obtained if 7ye were given a value different from Pe, but
this improvement does not exceed 2 percent in relative value and is
therefore of secondary importance.

The difference between ye and Pe, in the optimum arrangement

that affords this improvement, is readily apparent in figure 50, which
represents the quoted curves (tan Be) with tan ye as abscissa,

instead of the converse representation used in figure 49. It is seen
that in the optimum arrangement (tan Be - tan Ye) ilncreases from zero
to about unity when tan Be 1increases from O to 2. The corresponding
difference (Bg - 7e) therefore does not exceed 20 degrees, which should
be near the permissible limit, in order that the employed formulas main-
tain a satisfactory degree of approximation. One advantage, although
trifling, is afforded from this summary outline, namely, giving the
inclination of the rockets on the axis of rotation a value smaller than
the inclination of their absoclute speed on the same axis. 1In a certaln
measure, this conclusion can be reached by the rule that obliges to
give to the zero 1lift axis of a propeller blade section a geometrical
pitch superior to that of the helicoidal trajectory of the said section.
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In the corresponding position (7e < Bg) represented in figure 49,

the'reaction Ry - due to the jet of gases leaving the rocket is itself
inclined with respect to the speed 'V at an angle. 8e inferior to 7ye.

, It can be shown, in effect, that the angle 8e 1is given, in the
case of -tHe pure reaction propeller, by the simple formula

Xe sin ye - tan Be :
ten B =~ LS (203)

which necessarily involves

Ba < 7e 1f 7e.< Be
8e>7e if 7e>Be

65. Notes on the inherent advantage with a propeller driven exclusively
by reaction

Such a propeller can be regarded as a combination of a true rocket
(with liquid fuel), the jet of which instead of assuring direct propul-
sion by axial reaction (as in the case of the rockets studied in chap-
ter 1 of Part B of the first part of this report) furnishes in part the
propulsive thrust by means of a propeller which itself is driven by the
peripheral (or tangential) component of the reaction supported by the
exhaust nozzle, placed at tips of the blades and sensibly oriented along
its own trajectory.

This combination permits, as already demonstrated, speeds of the
order of 700 km/h at least, so as to obtain (by virtue especially of an
improved thermal efficiency mn4p) an important over-all efficiency Ng-

Moreover, the improvement of the thermal efficiency of this combi-
nation makes it possible to obtain a quasi-continuous and total expan-
sion, effected in part in the balanced engine and in part in the
revolving unit,; it offers the advantage of suppressing every mechanical
connection between the engine and the propeller, since, by definition,
no transmission of mechanical energy is effected between these elements.

In consequence, a variation of the operating conditions of the pro-
peller independent of the speed of engine itself can be provided. For
example, a simple modification of the orientation of the exhaust Jets
(connected or not with a change of the propeller pitch) can be secured
without modifying the speed of rotation of the adjoined engine.
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This advantage appears to merit attention.

By the same argument, the principle of the propeller driven
exclusively by reaction appears to be able to give rise in the form of
a hydraulic transmission by jet (and consequently, in open circuit)
between an energy generator and one or even several propulsive pro-
pellers, with certain interesting applications for the navy.

66. Addition of a thrust augmenter tube to the exhaust of the jet
propeller

As envisaged for the true rockets with direct and axial reaction,
the addition of a single or multiple thrust augmenter tube to the
revolving exhaust nozzles can be conceived.

The general formulas necessary are easily extended to include this
system, by reverting to the line of reasoning of articles (4k) to (L7)
while bearing in mind that:

(1) At induction, the system traps the corresponding volumes of
air a and a', at entrance in the heat engine and, at entrance in the
augmenter tube, respectively, the air in question may be regarded in
one and the other case as being at absolute rest and under the condi-
tions p,, Tg of the still atmosphere.

(2) At evacuation, the system supplies a mixture of burnt gases
and air trapped by the thrust augmenter tube, a mixture assumed
homogeneous (pe = Dg s Te) and moving at a uniform relative speed Wg.

It is immediately apparent that the previously established formulas
held true, provided that a is replaced by (a + a').

If it is expedient to neglect the aerodynamic resistance of the
rockets, fitted now with thrust augmenter tubes, and to adopt the
approximation, even more legitimate here, namely, to assimilate the
ratio (a2 + a' + 1)/(a + a') to unity. It gives the following formulas,
identical to (200) and (201), for the case where the orientation 7
of the rocket can differ a little from the orientation B of the
absolute speed of this rocket:

sin Ye
p

_ 1 2
n, = hny + 6':xe cos 7e(l + My tan Be tan 7e) = <l + my, tan Be EEE—E;

(203)
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2 sin 7y
Xe = z§.=\/1 +2(1 - h)qQ + tanEBe<—EEE—EgS - Q (20k4)
1 —
L
Q = —th™ (205)

B (a + a')V2

the thermal efficiency 14 &applying, to be sure, to the complete
thermal cycle, which includes the operation of the rockets and the
thrust augmenter tubes.

When a jet propeller with normally oriented rockets (Be = 7e) is
involved, it is sufficient to make 7. = Be 1in the preceding equations
and formulas which are omitted here since they are identical with those
used in all the foregoing numerical calculations relative to Jjet pro-
pellers, except that (a + a') is substituted for (a).

To study the advantages accruing from the addition of thrust
augmenter tubes to the exhaust of a normal jet propeller, it is
necessary to compare the over-all efficiency q' of the jet propeller
with thrust augmenter tubes with that of the jet propeller without
augmenter tubes to which it corresponds, the only difference between
the two arrangements consisting in the arrangement of the exhaust
nozzles.

With a double accent denoting the quantities of the reference jet
prepeller, without augmenter tube, the problem consists in ascertaining
if and to what extent the ratioc

X = —ngn = nthn X n 7T ) (206)

Mg +h ﬂp

can exceed unity; the relative difference is a measure of the advantage
or benefit accruing from the addition of augmenter tubes.

In this comparison L, a, V, m4y tan B = Us/V are obviously taken
identical in both cases.
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In these conditions qp"' end 7, are solely dependent on the

corresponding values of the parameter @, or

w _ Mth'D -
Q" = =5 (207)
aV
Nehle 7
Q= —E = Q" x e x 2 (208)
aV Tth 2 i @ '

The problem is one of knowing how the ratio

Y = —%
th

. . . a'
varies as function of the ratio u = =

As previously pointed out, ¥ depends, in the particular conditions,
chiefly on p and the corresponding pressure Ap = pl/p in the mixer

of the thrust augmenter tube (when a single, adiabatic augmenter tube
is involved), or in other words, Y decreases when @ increases,
irrespective of Aj.

On the other hand, it is easily checked that np decreases when Q
increases.

Therefore, when pu increases (starting from zero, case of exhaust
without effect of thrust augmenter tube), Y/(l + W) decreases, that is,
Q decreases and, consequently, Np increases. The variation of np
then results in variations, in the oppcsite sense, of mn4, or Y

and Mp-

There is absolutely nothing to prevent thinking that Mg could,
in these conditions, increase and therefore the addition of augmenter
tubes afford a greater or lesser benefit.

But every test of the numerical calculation will necessitate
assumptions for which the experimental basis, which is indispensible,
is utterly lacking at the present time.

For more details on this subJject, the reader is therefore referred
to the chapters of the second part of this report devoted to rockets
with thrust augmenter tubes, by stressing once more the importance of a
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systématic experimental study of the operation of gas augmenter tubes
and the influence of u and of A3 on the thermal efficiency of the
cycle of active bodies of fluids in thrust augmenter tubes of this
kind. ’ ' :

CHAPTER II

Summary and Conclusions of Part II

67. Review of results obtained in chapter I

The general scheme of the propulsive system represented by figure 34
involves the combination of a heat engine, in which a more or less
important part of the complete thermodynamic cycle of the active bodies
takes place, and a propeller which at the same time constitutes a
revolving exhaust, in which the aforementioned cycle is achieved.

The propeller is driven, in general, by the torque transmitted by
the engine on its shaft and by the latter operating as a gas turbine.

The over-all thrust is the sum of the propeller thrust and the
axial component of the reactions due to the exhaust jets.

The envisaged arrangement includes the usual engine-propeller com-
binations, the rockets with axial and direct reaction and, lastly, the
true Jjet propeller.

The principal results may be summed up as follows:

The formulas in articles 44 to 47 constitute the fundamental
formulas. They lend themselves to legitimate simplifications so that
the propulsive efficiency np can be expressed by the formulas (153)
and (155).

When the rockets are inclined with respect to their trajectory,
these formulas can be replaced by (200) and (201), which may cease to
be applicable if the inclination ye of the rockets differs too much
from the Be of their trajectory.

Assuming the propeller efficiency nn and the inclination
tan Be = Ue/V of helicoidal trajectory of the revolving rockets on the
axis of rotation as given, the efficiency 1 depends only on the
coefficient  h (defined in article 4k, formula (138)) and on the
parameter Q = ngp L/av=, and it is, in particular, a decreasing function

of Q (article 50).
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Within the possible scope of application and at speed not exceeding
700 to 800 km/h, Tp passes through a maximum (nn, tan Be, and Q being
constants) at a certain value of , h slightly below unity and this '
maximum exceeds the propeller efficiency n; very little.

In other words, in these particular conditions, the combination of
engine and the most advantageous rotating system is practically identi-
cal to the standard engine-propeller system where h 1is equal to unity,
that is, the effective energy of the thermodynamic cycle (defined in
article 44) entirely realized in form of mechanical energy in the engine
and transmitted by the latter to the propeller (cf. article 51).

The greatest attention should be given to the obtainable value of
the thermal efficiency ngp (and to the corresponding consumption of
air a, since this term affects both the efficiency 1np and the over-
all efficiency Mg = TMth X Mps which definitively constitutes the true

criterion of valuation (cf. article 52).

When proceding from an ordinary reciprocal engine and fitting it
with a revolving exhaust without modifying the pressure of combustion
or the volumetric ratio of expansion in the engine cylinders, the over-
all efficiency with respect to the engine-propeller system taken for
starting point is reduced (article 53).

When 1t is expedient to look for new and substantially different
types of heat engines (reciprocal or rotary) to form the engine, the
thermal efficiency mngp with respect to the actual aircraft engines,
can be improved by trying to secure a complete and continuous expansion
of the burnt gases in spite of their passage from the engine to the
revolving system (article 54).

The extreme case of a self-acting electric propeller, assuring the
centrifugal compression of the air at the inside of the suitably hollow
blades and comprising combustion chambers and expansion nozzles at the
blade tips, is of no practical interest by reason of the low ny}, due
to insufficient compression (article 56).

The arrangement of the true Jjet propeller (or driven exclusively
by reaction) which permits a balanced engine (h = 0) is of real interest
theoretically, for it promises considerable improvement of mip
(article 59, table XXIX) and at the same time affords certain advan-
tages due to the elimination of every mechanical connection between
engine and propeller (article 61).

However, this arrangement is inferior to that of the optimum system
(corresponding to a certain value of h near unity), which functions
with the same value of the ratio mngp/a.




NACA ™ 1259 167

For the true Jjet propeller, two main types of engine can be
envisaged: eilther a balanced reciprocal engine (with pistons) with
" rather high compression ratio, or a balanced turbojet with lower com-
pression ratio, these two types of engines with guasi-continuous and
“complete expansion to operate with a rather substantial dilution «.
The first actually preponderates and is used to envisage applications
with over-all efficiency perhaps equivalent or superior to that of
present-day engine-propeller systems, provided that the speed is in
excess of 700 to 800 km/h (article 60).

The second is much inferior to the first at the present state of
engineering of turbomachines (compressors and turbines).

As concerns the relatively slow decrease of 1p as function of
tan Be, that is, of the peripheral speed, the properties of the true
Jet propeller are directly connected to those of the single rotor gas
turbine (cf. article 61).

The addition of thrust augmentation to the exhaust of the jet pro-
peller (article 66) should not be condemned a priori. For a profitable
study of this question, the various problems concerning gas augmentation,
about which there is a lack of data, must be subjected to systematic
experimentation.

68. Classification of the various interesting types of propulsive
systems - ways of progress

The present report deals with propulsive systems which produce
their propulsive effect either exclusively by direct reaction, or by
direct (axial or helicoidal) and indirect reaction simultaneously, the
latter being obtained by making a propeller act in the outside fluid.

Three main systems are of interest:

(2) The classical engine-propeller combination, which sensibly
corresponds to the case (h = 1, tan Be = O) of the system termed Jet
propeller.

(b) The system or propeller driven exclusively by reaction and
balanced engine of the reciprocal or rotary type, a system corresponding
to case h = O of the reaction propellers.

(c) The system called pure rocket or rocket with thrust augmentation,
‘with direct axial reaction.

Summarily, it may be stated that the second and third appear to be
able to produce an efficiency equivalent or superior to that actually
obtained by the first, provided that the propeller speed exceeds 70O
to 800 km/h in the second case, and 1200 to 1500 km/h in the third.
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Considering that the propeller efficiency can decrease rather sub-
stantially at high and very high speeds of propulsion, the last two
systems appear destined to supplant the propeller in these speed ranges,
the first of the systems in question assuring so to say, the transition
between propeller and rocket. )

Although these speed ranges are of no use for the present, the
research concerning those systems of propulsion present a certain
interest for the future.

From this point of view, we belleve that the research to be under-
taken should be concentrated on:

The improvement of the efficiency of the compression and expansion
turbines, which involves that of the specific horsepower and the
efficiency of heat engines with piston, and which strive toward their
ultimate form, that is, toward the internal combustion turbine.

The operation of gas augmenters, a problem still insufficliently
explored, offers a multitude of interesting applications.
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APPENDIX I

Steady Flow of Viscous Gases

1l. General equation of steady flow. _
A gas (a compressible fluid whose inside state is defined by the

two variables: density p and temperature T) can be expressed by the
general equations of steady25 motion

1 tE + 1 00
5-%5 =X - 3x + ——B—ﬂ S+ % Au

Ce e (1)

Bézu) + éé;v) + éégﬂl =0 (2)

where p represents the "reversible pressure' corresponding to the
state (p,T) of the fluid by the equation of state or of compressibility,

the vector (Jy, jy, jz) of the acceleration of the fluid at the point

in question, the parameter 6 the cubic expansion g% + %% + 8:’ and €

and 1 the coefficients of viscosity of Navier and Poisson, which
‘depend on (p,T)

In addition, there is the equation of state
f(P) P, T) =0 (3)
These five equations are insufficient for determining the six
unknown functions: u, v, w, p, p, T, to which must be added a supple-
mentary relation which can be supplied only by thermodynamics.
2. Suppleméntary relation.
It is necessary to introduce the proPerties of the fluid with

respect to the propagation of the heat (by conduction and radiation)
in its mass.

25The steady motion, that is, with constant speed at each point,
' which excludes the agitation which, if it occurs, can be allowed for by
the introduction of a fictitious viscosity of turbulence.
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The radiation'is disregarded (although it is not always negligible
for real gases when they are at elevated temperatures).

Ordinarily, the introduction of the conductivity 1s eliminated by
assuming it zero or infinite.

The internal conductivity of real gases being, in general, élight,
its effect may be disregarded in first approximation in the rapid
transformations of these fluids.

Considering only the rapid transformations of a gas endowed with
viscosity and flowing at high speed in steady state, the conductivity
is assumed to be negligible.

Therefore, on considering an element of mass dm of such s fluid,
the heat d4'Q which it receives from the outside in time interval dt,
and which is reduced to that transmitted by the surrounding fluld by
conductivity, is zero. Hence, according to the Carnot-Clausius
principle

d'Q = (TdS + d'Cyy) dm = 0 (%)

S signifying the entropy per unit mass and d4'Cyi{ the energy of the
internal viscosity in time interval dt per unit mass.

This energy of the internal passive resistance 1s
e - - 2 m[@F - (5 - @] -
Beef-@efoa9l o

Suppose, on the other hand, that the gas obeys the laws of perfect
gases in the states of equilibrium

p = RpT h
dU = cdt
5 (6)
R=Cte =C -c
¢ = function of T

/
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"The principles of thermodynamics give for these laws

L Tas = d(U + E) - i‘g’- (7)

Thus the desired supplementary relation (4) takes the form (with .
due allowance for (5) and (6)) :

%(mg)'-%g%: -%§92+2nA2+q132] (8)
with |
- @ - G- G
YR R )

3. Equation of flow along a filament.

In the case under consideration the principle of the conservation
of energy does not supply, in general, the first integral of the motion
along e flow filament.

By suppressing the viscosity, the first integral of the motion
along a steady filament is (in the absence of forces at distance
X=Y=2-=0)

2
p v
U+ g+ 5 = Cte (9)

hence a relation analogous to that by Bernoulli (first integral of the
kinetic energy) in the case of incompressible fluid (p = Cte) and
devoid of viscosity, in steady flow

P - Y2 _ (te (10)
o] 2

However, an equation similar to (9) along a steady filament of viscous
.and -nonconducting gas can be obtained.
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From the flrst three equations (1) (where X =Y =2 =0 by
assumptlon), follows, after multiplying each equation by udt vdt, wdt
and adding

2 _
iE—-dV—+£-—g—Tld9+2AVd (11)

@]

where V is the speed (u, v, w), AV .the vector (Au, Av, Aw), and ds
the displacement (udt, vdt, wdt) along the filament.

Reconciling (11) with (8), gives the desired relation

o) ’ —_—
d(U & ‘1;2 + %) = %E 62 + 2(21@ + Bzﬂds 5 g——;f-—’l e + gAV s (12)

or

2

The derivative of the function <U + % + %;) with respect to the

displacement s along the filament is not necessarily negative. (the
term -d'Cyi{ 1is essentially positive), contrary to what is at times
believed when establishing a wrong comparison between the second term
of (12) and the loss of head of viscous fluids.

Equation (12) expresses the application of the principle of the
conservation of energy (or first law of thermodynamics) to the flow
along the steady flow filament. The direct application of this princi-
ple introduces the energy of the normal forces (which differ from the
reversible pressure p) on the straight sections upstream and down-
‘stream from the portion of the filament in question, as well as the
energy of the tangential actions of the ambient fluid on the lateral
surface of the filament portion. The foregoing reasoning avoids the
difficulty of evaluation of these reports by the use of formula (5)
of the energy d4d'Cyi of the internal viscosity, a formula assumed as
known and which derives from the fundamental notions which thermo-
dynamics form on the viscosity.

4. Note.- Comparison with incompressible fluid.

In the case of a liquid (p = Cte) the relation

(13)

[}

af _
\—E V—)=3AVd
p 2 P
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along a steady flow filament and in absence of remote external forces
is easily obtained from the equations of motion without having recourse
to thermodynamics.

'This relation cannot be considered as a particular case of (12),
where € =0 and 6 = Cte for the viscous and incompressible fluid,
as the latter is a poor conductor and experiences-an adiabatic trans-
formation as explicitly assumed when establishing (12).

But the properties of a viscous fluid involve the relation
TdS = 4U

and, therefore, by calling d'Q the quantity of heat received by con-
ductivity in time interval dt by an element immersed in the mass, the
quantity referred to unit mass is

d'Q = TAS + d'Cyy = AU + d'Cyy (1k)

In the case of viscous liquid, this relation and (13) constitute
two general equations for the flow along a steady filament. If the
liquid is a very poor conductor, d'Q is negligible, and it is seen
that relation (12) applied to the specific case of the liquid whose
flow 1s steady and essentially adiabatic

dU—f—d' 157 as
+ + 5= - gvi + 0 A s

actually decomposes in two simultaneously verified relations

The first of these two relations, that is, relation (13), is
moreover verified whatever the thermodynamic transformation of the fluid,
since it is established direct, starting from the four equations of
motion and the equation of the state of the ligquid, p = Cte. However,
it is dependent upon the nature of this transformation, because the
coefficient of viscosity 1, which depends only on temperature T,
varies actually with the latter, in ggnerall
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In the case of the liquid the transformation is generally regarded
as isotHérmal (T = Cte); either the liquid is a very good conductor and
in relatlon with a single source of heat or the viscosity is very low

and the liquid without calorific communication with the outside medium.

In such cases, n 1is practically constant and the equations of
motion (as well as the general relation (13)) do not introduce the tem-
perature other than by the constant value to be given to 1. This is
the study of motion without recourse to thermodynamics.

5. Steady and sensibly cylindrical flow of viscous gas.

By steady and sensibly cylindrical motion is meant the steady flow
in which the speed is practicaelly reduced to its component parallel to
a Tixed axis, such as axis x, for instance, and in which, moreover, the
speed and the state of the fluid are uniform on every parallel, that is,
on every circle orthogonal to the axis of the flow and centered on this
axis.

Every plane perpendicular to the axis x of the flow constitutes
then an orthogonal section (straight section of flow) and the reversible
pressure ©py is constant.

Always assuming the gas to be devoid of internal conductivity and
disregarding the radiation, the equation of motion (x being taken as
variable abscissa and r as distance from the axis) is reduced to

L b 23 62 H(l du 62 ) (15)

1 op

ey o~ ) B

dp ou _
u <2 + p = 0 (16)

with the unknown functions u(x,r), p(x), and p(x,r) and the coeffi-
cients of viscosity € and 1 dependent on p and on T.

The equation of state being assumed to be that of perfect gases
p = RpT (17)

the foregoing equation must be augmented by the supplementary relation
(8) and which can be written as

1 uodp Y p ou ¢ + onfdule 1/0u 2
T r et Te T (&z) 'p(ssz> g

-

tec)
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‘The equations (15) to (18) are the compléte equations of motion
vhich are used for computing the unknown u, p, p, and T when the
initial and the extreme conditions are known.



176 . _' NACA ™ 1259
'APPENDIX II
On the Theory of Viécous Fluids in Nozzles

1. The problem.

Consider the steady flow of a viscous fluid in a nozzle fitted on
the wall of an infinite tank.

The theoretical problem consists 1n determining in complete manner
either the flow corresponding to a given nozzle or the nozzle in corre-
spondance with a given flow.

The theory of nozzles 1s as follows: The apparently steady real
flow is replaced by a viscous fluid, moving or otherwise, and whose
internal tensions and mean speed are variable in every straight section
of the flow, the flow by sections, that is, with uniform speed and tem-
perature in every section perpendicular to the axis of flow, of a non-
viscous flow obeying the same equation of state, sliding against the
wall and submitting, in part of it, to a reaction of retarding friction.
This retarding action represents the effect of internal viscosity of the
real fluid as well as the tangential forces in contact with latter and
with the wall. The nature of the thermodynamic transformation undergone
by this fictitious fluid is expressed by a simple hypothesis.

2. Approximate theory of nozzles.

The equations of flow are easily put in the following form; the
subscripts 1 and 2 refer to any two straight sections (assumed plane):

V22-V12 2 2
e _u/‘ odp —u/ﬁ Xdx (equation of motion) (1)
: 1 1
(9!> = Cg!> = m (equation of continuity) (2)
o4 9/

Quantity X designates the absolute value of the retarding action
referred to unit mass, x the displacement along the stream, w the
area of the straight section, and m the volume of the nozzle by mass.



NACA TM 1259 - | 177

Quantity X is usually put in form of
=qn X
X=n 5 Ve__

X designating the perimeter of contact (wetted perimeter) of the fluid
with the wall in the straight section of area . In the case of
circular nozzles

2
X =xD and o = D
L
we get
42
X=17 (3)

With the force X (per unit of mass) expressed in this form, the
coefficient 1 1is nondimensional. By virtue of the homogenity of the
equations this function v is thus a function, with numerical coeffi-
cients, of the invariants, the number of which is determined by the
Vaschy theorem after all independent quantities affecting the value
of X are listed.

(a2) Case of incompressible fluid.- This fluid beilng characterized
by o = Cte, equations (1) and (2) are adequate for solving the problem
of plotting the nozzles once it is known to express the coefficient 1
of formula (3).

Ordinarily 1 1is put equal to Cte, the choice of numerical
values being obtained from test data.

(b) Case of compressible fluid.- Equations (1) and (2) are no
longer sufficient because, x being taken for variablé and m being
given, they contain four functions p, o, w, V of x, only one of
which is given theoretically [w(x) when the nozzle is given, p(x)
vwhen the flow is giver].

A supplementary relation must be obtained from thermodynamics.
Moreover, except when neither this relation nor the expression of 7
introduce the temperature, the equation of state of the fluid must be
introduced

p = £(0,T) (%)
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The supplementary relation corresponding to the fictitious flow
is set forth 'in the following manner.

The quantity of heat 266md'g received.by the fluid element of
mass Om during its path dx is the sum of:

(2) The hest volume dmd'Q; transmitted to the particular element
by the surrounding fluid by radiation and conduction

(b) The heat volume &md'Qt transmitted to this element by the
nozzle through radiation and conduction, or heat exchange with the wall
by convection

(c) Lastly, the part (1 - a)(0< a< 1), taken by this fluid element
of the heat volume equivalent to the work of friction of the fluid
against the nozzle, omd'Qr.

Dividing by om and referred to unit mass of fluid, we get
a'g = d'g; +a'gy + (1 - a)d'gs
On the other hand, by the principlé of Carnot-Clausius
d'Q = TdS = dU + pdo
so the supplementary relation takes the form
TdS = dU + pdo = d'Qq + d'Qy + (L - a)d'Qs (5)

To establish a convenient connection between the conventional flow
of the fictitious fluid and the real flow, certain appropriate assump-
tions can be made about the exchanges of heat d'Q;, d'Q:, (1 - a)agr

which concern the fictitious fluid.

However, when assuming that the flow is accomplished by sections
and of a uniform temperature in every straight section of the stream,
the hypothesis is ostensibly simplified, as it is useful to specify
that the heat volume (Smd'g) received by the section of the fluid of

m
mass ©Om and thickness ©®x = e ig either zero or else uniformly

distributed in the mass.

26The accent given to the letter d is a reminder that the
gquantity 4'Q is not, in general, a total differential.
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On the other hand, it is natural or reasonable to admit for most
problems of flow in nozzles that the nozzle itself exchanges only a
negligible amount of heat with the outer atmosphere, that is to say,
that the total heat volume which it receives from the fluid
(-dﬂgt + ad'Qe) is zero.

The total heat volume d4d'Q received per unit mass of fluid and
assumedly uniformly distributed in the transverse thickness of the
stream a 1is then

a'Q = 4d'Q; + a'Qy + (1 - «)d'ge = a'Q; + d'Qe

For this quantity of heat, which penetrates in the sectlon, of mass ©om
and thickness ®x, through its outside surface (straight sections up-
stream, downstream, and laterally in contact with the nozzle), to be
uniformly distributed in the transverse thickness of the section, it is
necessary to assume

(a) That the fluid is a perfect conductor, in which case nothing
permits to predict the value of d4'GQr

(b) Or that the fluid is devoid of conductivity and hence,
d'Qs = zero and, since d4'Qp, is not zero, (it is immediately seen
that 'd'Qe is equal to Xdx or 5‘]—;1 V2dx), it must be conceded that
the quantity of heat 4'Q 1is uniformly transmitted in its entire trans-
verse thickness of the section other than by conductivity, as by
radiation, for instance.

Notwithstanding the difficultles raised by this line of reasoning,
it is admitted here that, by analogy with the real fluid, the con-
ductivity of the fictitious fluid must be regarded as negligible, so
that

d'Q; =0
d'Q = d'ge = b’—];l Vedx

In these conditions, the desired supplementary relation is

Tds=dU+pdcr=%lV2dx - (6)
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The final equations of the fictitious flow are as follows:

(a) VAV = -odp - %9 V2ax (equation of motion) h
(b) oV = mo (equation of continuity) $
(1)
(c) p = £(o,T) (equation of state)
(d) TdS = AU + pdo = %9 V2dx (supplementary relation))

The equation (Ia) expresses what may be called the equation of the
active forces for the fictitious. fluid, derived direct from the
equations of motion.

Replacing it by the relation that supplies the principle of the

conservation of energy, we get

-a(po) - %l VPdx + d'Q = au + vav

This equation, together with (Id), is equivalent to equation (Ia),
but expressed in different form.

3. Gas nozzles:
With the equations (I) established for the flow of the fictitious
gas and assuming that this gas obeys the laws of perfect gases (R

being a constant and C a simple function of T):

po = RT = (C - c)dT

TdS = dU + pdo = C4dT - odp

The equations of flow become

\

VAV = -odp - %ﬁ Veax
WV = mo
’ (I1)
po = RT
I
CaT - odp = 5 VPax
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In these conditions the problem of the gas nozzle would involve
either (1) the function w(x) (that is, the form of the nozzle) being
given for the determination of the functions V, p, o, T of x (that is,
the flow) or (2) one of the functions V, p, 0, T of x being given
(that is, the law of flow) for the determination of w(x) and the other
unknown functions (that is, .the form of the nozzle and the complimentary
characteristics of the flow).

The preceding four equations (I) enable a complete solution of
this problem provided it is known how to express 1 as function of x.

In incompressible fluid, the approximation 1n = Cte . is often
resorted to. For a compressible gas or fluid, the case under considera-
tion here, such an assumption would be too roughly approximate to give
acceptable results and 1 should be considered as variant with V, p, o,
and T as well as with %ﬁ, because the effect of the internal vis-
cosity of' a real fluid is different, as proved by experiment, depending
on whether the flow is accompanied by expansion (expansion nozzle) or
by compression {compression or diffuser nozzle).

Therefore, the whole problem of gas nozzles, reduced to a
fictitious problem according to the foregoing conception, consists in
determining the form of the function 1 which characterizes the
retarding action acting on fictitious fluid.

In spite of considerable researches, this problem cannot be said
to be solved, and is in need of systematic experimental study.

The equations (II), of course, are applicable only in the absence
of shock waves in the fluid (across a wave of this kind, the supple-
mentary relation set up above ceases to be applicable and should be
replaced by another such as the law of Hugoniot or the law of dynamic
adiabatic), that is to say, as long as the speed of flow is, at the
most, equal to the velocity of sound in the fluid at the same point.

k. Velocity in the throat of a nozzle.

One important result relative to the velocity in the throat of the
nozzle, when the flow satisfies the equations (II) is the following:

By differentiation of the equation of continuity and assuming dw
negligible with respect to dV and do, the velocity in the thrust is

00AV = Vedo (7)

Subscript ¢ refers to the throat of the nozzle.
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On the other hand, the first of the equations (II) can be written

| b ax
VedV = -chpE + = V.2 (Eﬁ)C:] (8)

Dividing (8) by (7) and reducing, leaves

Ve =\/-0C2(g—§)CE + —l%l Vce(%)j (9)

The transformation of the fluid, in the throat as along the nozzle,
is an endothermic reaction which can be expressed by

as

4'q
( ° gﬁ) - g(PG)C - %'Ocd'gf = 7(P0)c - (r - l)(c d;f)c

The velocity of sound ac in the fluid at the throat of the nozzle
is given by the clasgical formula
8.C2 = 7(P0)C

so that equation (9) can be written as

e B e
o}

When d4d'Qr 1s essentially positive, the preceding formula shows
that, if expansion occurs in the throat of a nozzle, (dp negative,
do positive), we get

VC 7 ac

or, in other words, that the velocity of a fluid at the throat is lower
than the velocity of sound in the fluid at the same point.

It is remarked that, provided that dw is negligible in the throat
with respect to dp and do, this result is rigorous because the equia-
tions (II) are valid for the throat since a shock wave cannot exist in this
point where V. 1is lower than ac.
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Furthermore, if the expansion of the fluid is continued upstream
from the throat, no shock wave can exist upstream from the throat (the
convergent part of the nozzle), since in this area the velocity of
sound decreases continuously when the speed of flow increases continu-

‘ously without being able to reach the first.

In the case of a compression nozzle or diffuser, equation (10)
shows that, do being negative and dp positve

Ve > ac¢

that is, the speed of the fluid in the throat of the diffuser exceeds
the velocity of sound at that p01nt. Moreover, a shock wave can form
upstream from the throat.

5. Representation in Mollier diagram.

Suppose that the state of the fluid at each instant and per unit
mass is represented in the Mollier diagram where S 1is taken as the
abscissa and the total heat of the fluid A = U + po as the ordinate.

For a gas that obeys the laws of perfect gases, this diagram
differs from the entropy diagram only by a change of the scale of the
ordinates since, for a gas of this kind

"dA = 4(U + po) = c(T)aT

On the Mollier diagram, like:on the entropy chart, the lines of
constant pressure are parallel curves derived by a simple translation
along the axis (8) of the abscissa. The slope of the tangent to a line
of constant pressure 1s equal to the absolute temperature in each point.

Let (1) be the curve representing (fig. 51) the transformation of
the gas along flow starting from point M; representing the state of
the gas in a reference section 1.

The system nozzle-gas undergoes, with respect to the outside
atmosphere at uniform temperature @, a monothermal transformation
during which, according to the Carnot-Clausius theorem, the noncompen-
sated work, that is, the loss of energy, has for elementary value d4'yy

with respect to unit mass
d'17' = @48 (11)

since the exchange of heat with the outside is zero and the nozzle does
not rub against the surrounding atmosphere.
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On the other hand, the supplementary relation (5) is written

a'Qe = %1 Vedx = Tas (12)

hence the loss of energy

v . @ i, L @ oo
a'Il = = d'gr = 7 3, Voax (13)

This loss, essentially positive, represents the decrease in effec-
tive energy of the fluid in consequence of irreversibilities which the
flow introduced in the nozzle. This effective energy r (with exception
of a constant of no significance sirnce variations in r are only
considered) is represented by the function

2 2
_1_-=U+por-®s+v?=_/\_-®s+%

Between two sections 1 and 2 of the flow the laws of thermodynamics
give

Vo2 - V42 2
———— =41 -Ap + e(sy - 81) - . arix (14)

The Mollier diagram affords a convenient representation of the
preceding quantities when, as assumed on figure 51, the curve (1)
representing the transformation of the fluid can be plotted in it.

Draw through the point M; the straight line A8 of slope 6
(parallel to the tangent of the line of equal pressure p] at the:
point of the temperature @&, taken here arbitrarily as origin of the
coordinates S and A).

It is readily seen, according to (11) and (1k), that for a point Mo
on the line of transformation (1) and along the scale of A:

The vertical distance ppom, represents the total energy loss
(positive) II; 5 from 1 to 2;

The vertical distance Mpu, represents the change in kinetic

energy Awl,g = %(Vge - V12> from 1 to 2.
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The tangent to.the line of transformation (1) has the angular
coefficient

G - e
4 c& _gr & 1 - (_._E)
T /, C ar ),

Let us examine the case of'expansion nozzles and that of compres-
sion nozzles, considering only the parts of the flow without shock wave,
so as to preserve the validity of the flow equations (II).

However, it should be noted that in both cases the entropy S
always increases by crossing along the flow, since TdS = 4'Qe
(essentially positive); the line of transformation (1) is therefore
always passed In the sense of increasing entropy.

(a) Expansion nozzles.- By definition dp 1is, in this case, always
negative.
2

V.
Starting from a point M; without speed, AW = —g— can only be

positive at the point Mp of the pressure po below p; and, con-
sequently, the point Mp on the isobar po, can only be situated
between the points A, and By, and the line (1) must fall within the

curvilinear triangle A MjB, without having any vertical tangent.

If the speed always tends toward increasing, the curve (1) decreases
from left to right and vice versa (as seen from the relation VaVv = -CdaT).

The shape. of the curve (1) is largely dependent upon the form of the
coefficient 7 in the expression of d'Qe, that is, the importance of
the effects of viscosity and friction in each section of the real flow,
effects which are summarily represented by the retarding effect acting
on the fictitious fluid.

Therefore, an increase in speed requires an expansion, but the
reciprocal is not true, that is, the acceleration in an expansion noczzle
is not necessarily always positive; in pérticular, the fluid may,
without ceasing to expand, undergo a deceleration.

(b) Compression nozzles.- By definition, dp is, in this case,
invariably positive.

Hence, since dS =C %% - %? is essentially positive, 4T 1is

necessarii& positive and dV negative.
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The line of transformation (1) always ascends from left to right
and presents neither vertical nor horizontal tangent, as exemplified by
the curve M1M3 in figure 51.

So the compression nozzle always produces a deceleration of the
flow, but the reciprocal is not true, as seen from the rise for the
expansion nozzle. It being understood that the compression nozzle
functions only from an initial state M; of the stream at speed other
than zero and only up to the pressure for which this initial kinetic
energy is canceled, that is, up to a final temperature Ty such that

T v
f T ocat = = (15)
2
251

Starting from a state without speed, the flow is thus simply readied
by the expansion.

The foregoing results arise principally from the assumed existence
of the fictitious retarding action 1 or the wall friction.

When this friction disappears, the transformation of the fluid is
adiabatic and reversible, hence defined by

TdS:CdT-RT%:O

and represented by the vertical in point M;. Expension and compres-
sion will therefore be rigorously synonyms of acceleration and
deceleration of the flow.

6. Nonadiabatic nozzles.

In the foregoing, the exchange of heat across the sections of the
flow (d'Qi = 0) as well as between the nozzles and the outside
atmosphere © had been assumed zero.

These assumptions are generally admitted and appear adequate for
the majority of problems on gas nozzles with sufficiently high speed.

Nevertheless, there are problems for which these assumptions must
be modified, such as when the nczzle is systematically subjected to
cooling or heating from the outside.

In cases of that kind it is expedient, while conserving, if
necessary, the assumption” d4'Q; = 0, to put
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d'Qy - ad'Qe = d'Qy # O

d'Qe represents the quantity of heat supplied to the nozzle from the
outside. : : S

The equations of flow then read:

Vav = -odp - %" veax )
wV = mo
P (111)
po = RT
CaT - oap = 2 v2ax + a'g
D € /

the energy loss becomes

@

c)
d'IT = @S - d'Qe =7 d'Qr - (l - T)d'ge
®< T, if 4'Qe 1is negative and vice versa.

The expansion nozzles are again classified as heated nozzles and
cooled nozzles. The term d'Qe 1s readily allowed for when representing
on the Mollier diagram the quantities AW and II which compensate the
variation A(A - @S) in the energy balance of the flow.

7. A frequently utilized approximation.

The complete approximate theory of nozzles requires the knowledge
of the fictitious retarding action, that is, the coefficient 1 which
characterizes it as function of the characteristics of the fictitious
stream (p, o, T, V, w) and of the state of the wall in that particular
section.

For compressible fluids or gases, the theory is still incomplete
on this point. '

At times this difficulty can be avoided by assuming a priori a
certain law for the transformation experienced by the fluid, a law
called the polytropic law and of the form

n te

po = C with n>1 (16)
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This relation forms the supplementary relation. Together'with
the equations of motion, continuity, and state, it supplies the system

VvV = -C4T (equation of motion)
wV = mo (equation of continuity)
> (Iv)
po = RT (equation of state)
pcn = Cte (supplementary relation)
/

of four equations where the abscissa x of the particular section does
no longer intervene.

With p taken as variable, the four unknown functions o, T, w
and V of p, can then be determined from the foregoing system.

Of course, this does not mean the exact shape of the nozzle, (that
is, the area w of each section as function of abscissa x); the cor-
rect length must be defined by experiment. Let us examine the value
which involves the phenomena of viscosity and friction of the real flow
for the exponent n of the polytropic law of the fictitious fluid when
the nozzle is assumed adiabatic with respect to the outside medium.

If the fictitious flow was reversible, the supplementary relation
becomes

po’7 = Cte

y 1is the ratio of the specific heat C/c at constant pressure and
constant volume.

In fact, the fictitious flow 1s irreversible and it has been shown
elsewhere that dS 1is then invariably positive, which can be expressed
by the condition

ds=|i—'——}-c-1€l%-’—>o

n
Hence the following conclusions:
(a) Expansion nozzles.- The flow is continuously accelerated, since,

by virtue of the equations (IV) and the exponent n Dbeing essentially
greater than unity, dp and dT are consistently negative.
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Moreover, n < y of necessity and therefore

l<n<y

Py : '
Hence, for a given ratio i) of expansion, the increase in kinetic

energy and the drop in_temp%rature are less than if the expansion were
reversible.

Furthermore

> (17)

/

(p) Compression nozzles.- For these nozzles the flow is consistently
decelerated and

n>7

b
which causes, for a given ratio of compression 52, the decrease in

1
kinetic energy and the increase in temperature to be much greater than
if the expansion were reversible. The formulas (17) are still
applicable, but the exponent 1 has then a value greater than 7.
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. APPENDIX III

The Theory of Thrust Augmenters;'and Particularly

- of Gas Augmenters

1. Definition of thrust augmenters.

A thrust augmenter is a Jet apparatus consisting of fixed elements
in form of nozzles and in which a primary fluid entrains another fluid
by transferring part of its effective energy to it.

This transmission of energy may have for principal object to
increase either the pressure of the entrained fluid or its kinetic
energy. The Giffard steam injector is an example of a thrust aug-
menter of the first category, whereas the rocket with thrust augmenta-
tion belongs to the second category.

The single thrust augmenter tube corresponds to the diagrammatic
sketch of figure 52. The driving fluid m, launched by nozzle A,
entrains the fluid m', conveyed by nozzle B, in the part of the
nozzle C called "mixer", then in the diffuser D (generally divergent).-

The nozzles can have any desired sectlonal shape. Generally of
circular section to favor symmetrical flow and facilitate the machining
of the walls, they occasionally present a rectangular section giving
jets in waves.

By multiplying the inflow nozzles of the fluid, as indicated in
figure 53, a multiple thrust augmenter is obtained. The purpose of
this arrangement is to favor the progressive entrainment of the passive
fluid by the active fluid by increasing the areas of mutual contact of
the fluid jets actuated at different speeds. TFor the same reason, the
Jjet of the driving fluid is, theoretically, centric and not outside,
but it may also be given an annular section in certain applications so
as to render its external and internal surfaces active simultaneously.

2. Approximate theory of augmenters.

As to the flow in the inlet and discharge nozzles, the ordinary
concepts of the nozzle theory developed in the preceding appendix can
be assumed. But it should also be noted that the latter are not
applicable to the discharge nozzle or diffuser if the flow in latter
is comparable to a homogeneous fluid mixture.
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To avoid any difficulty in this respect, it is advisable to
restrict, by definition, the part of the thrust sugmenter called
"mixer", on the upstream side to the straight section®(, to the point

-of incipient.contact of the driving fluid with the entrained fluid on

the downstream side to the straight section starting at the point where
the temperature and the speed can be compared to uniform quantities in
every straight section of flow.

As to the functioning of the thus defined mixer, two principal

" conceptions can be visualized:

The driving fluid and the entrained fluid are regarded as forming
two distinct flows, that is, do not mix, and friction, viscosity, and
exchange of heat prevail at the surface of contact or else the two
fluids are considered as intermingling, with friction, viscosity
(internal by contact ‘and diffusion), and exchange of heat introduced
in such a way as to produce a homogeneous mixture acting as a single
fluid downstream from the mixer.

The first concept, that is, that of augmenters with individual
flows can be developed in a theory, but it is not applicable to devices
with rapid and turbulent jets where the mixture of the Jets 1s manifest,
experimentally. Moreover, it raises certain difficulties resulting
from the arbitrary assumption that the speed and temperature in a cer-
tain s.ction which limits, by definition, the mixer downstream are
simultaneously equal in the two flows. Lastly, even if this objection
did not exist, the flow in the diffuser would not be formed, a priori,
in the same manner for the contiguous flows and will give rise to con-
tact effects similar to those produced in the mixer.

The second concept, that is, that of thrust augmenters with flows
effectively mixed in the mixer itself, responds much better to reality.
It has been utilized, particularly by Rateau (Theory of Augmenters by
the author, published in the Revue de Mecanique, 1900, Paris; see also:
Cours de Machines, taught at the Ecole Nationale Superieure des Mines
by E. Jouguet) in his classical study, and which is adopted in the
present study, restricted to the single thrust augmenter.

3. Assumptions on the functioning of the mixer:

According to the concept to be adopted, the motions of the real
fluids cannot be reduced to those of fictitious fluids devoid of

2T The single nozzle is involved here, For multiple nozzles, the
sections of incipient contact of flows serve as entrance sections in
the mixer unit.
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viscosity because internal and contact viscosity play an essential part
in making the velocities uniform in the mixer. :

The effected 51mp11flcat10n is limlted to the real functioning, for
the formulation of the approximate theory in mind.

It is assumed that:

(a) The viscosity exerts no appreciable effect in the inlet and
discharge sections of the mixer.

(b) Speed and temperature are uniform in the two sections of entry
and in the common discharge section.

(c) The fluid mixture leaving the mixer is homogeneous.
(d) The regime of functioning is steady.

(e) The mixer is adiabatic, that is, transfers no heat to the
outside.

(f) The reversible pressure that exists at every point of the
fluids contained in the mixer is constant.

The last assumption merits some comment.

On the one hand, it is evidently approximative and entirely
Jjustified by the simplifications which it effects on the theory.

It affords, at least, a summary and simple study of the functioning.

On the other hand, this pressure in the mixer is identical with
the actual pressure existing according to (a) at the inlet and outlet
of the mixer. At the lateral surface of the mixer, that is, against
the wall, it represents the normal force exerted by the fluid against
the said wall. But, as concerns the tangential force along this wall,
it cannot be supposed that it is everywhere zero, since friction and
contact viscosity of the fluid which give rise to tangential forces are
not, a priori, negligible and it is not certain that the speed of the
fluid along the wall is everywhere negligible, hence, that the boundary
layer adheres.

It should be noted that the previocusly enumerated assumptions are
definitely not incompatible.

Theat the viscosity may have an indifferent effect in the extreme
sections is a common assumption for regular flows to which those
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entering and leaving the mixer are compared. That the final mixture
is homogeneous, that is, the elements of the fluid mixtures are dis-
tributed at each point with the same temperature for two contiguous
elements and -under uniform. pressure with respect to identical masses
and volumes, is a physically plausible assumption.

That the velocities and temperatures are uniform in the two inlet
sections and in the common outlet section is a simplified representa-
tion of the real problem which simply consists in defining these
velocities and temperatures by their mean values for the corresponding
volumes and assuming that the mean difference in velocity with respect
to the above mentioned average 1s small or, in other words, that the
velocity is sensibly uniform in the extreme sections so that the average
of the thus defined velocities can be used to express the average
kinetic energy.-:

Lastly, that the (reversible) pressure of the fluids contained in
the mixer is uniform, that is, constant in the entire mass, is the sole
assumption which particularizes the functioning at the inside of the
mixer. Without conceding that it could give rise to certain reserva-
tions, it is admitted here for the purpose of simplifying the problem,
as already adopted by various authors, and particularly by Rateau.

., Equations of functioning of the mixer.

The corresponding quantities of the entrained fluid are accented
to distinguish them from those of the actuating fluid, subscripts 1
and 2 refer to the sections at entry and exit.

The volumes by mass of the actuating and the entrained fluid are
denoted by m and m', the corresponding partial inlet and outlet
sections by ® and o' (the extreme total sections are Q1 =w; + o'

adl fg S B @0

Considering gas augmenters only, 1t is assumed that the gases obey
the laws of perfect gases in the reversible transportations.

The sole object of the equations to be formulated is to link the
conditions (sections, volumes, speeds, and states of both fluids) at
the mixer outlet to the corresponding conditions at the mixer inlet.

As in all problems of the mechanics of compressible fluids, hydro-
dynamics supplies the equations of motion (reduced to only one since
it concerns, in the extreme sections, flows at speeds parallel to a
specified direction, that of the axis of flow), and the equations of
continuity for the two fluids supplemented by the equation of state of
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these fluids and a supplementary relation which involves thermodynamics
and which expresses the nature of the transformation undergone by the
fluids in the mixer. :

The equations of continuity are expressed by the relations

moy Wy Wy m'017 = wl’wl'

, (1)
e = G e S Gyt Uy

since, by assumptions, w2' = V5.

The equations of state read

—_ | R 1 1

plcl = RTl plcl =R Tl
RT t = RIT (2)

P10y = Bl POy =R

where R and R' denote constants, since, by assumption

1

Po' =P =P' =pp and Tp' =Ty

To obtain the over-all relation corresponding to the equations of
motion, the momentum theorem which serves to establish the equations of
hydrodynamics can be applied to the fluids contained in the mixer.
Projected on the axis of the mixer and with Fi as the absolute value
of the resultant forces (opposite to the direction of flow), the
tangential forces exerted by the wall of the mixer on the adjacent
fluid are

(m + m')wy - mwy - m'wy' = -Fy
or
(m + m'")wy, = (1 s JNmwy + m'wy ") (3)

J denoting a positive number which expresses the effect of these tan-
gential stresses as will be explained later.

The last relation is obtained by indicating that the functioning
of the mixer is adiabatic with respect to the outside.
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The application of the Carnot-Clausius principle in unit time to
the mixer and to the mixing fluids gives :

2 , 2
Z‘émf T3S + Zom' f T'dS' = -AC;
1 1

the sum % Dbeing extended to the corresponding volumes m and m',
and ACj denoting the total and essentially negative energy of the
effects of viscosity and friction, in unit time internal as well as by
contact between fluids or with the wall, introduced in the mixer.

For the gases under consideration
TdS = C4AT - odp

and, by virtue of the assumption of constancy of pressure in the entire
mixer (p= Py), TdS = CAT or with A denoting the total heat, that is,
the function defined for perfect gases by dA = d4(U + pg) = CAT

TdS = dA
Finally, the supplementary relation reads
m{Ay - A1) +m"(Ay' - ') = -ACy (%)
Ay' refers to the same temperature (Tp) as As.

The equation of motion can be obtained in a different form than (3)
by applying the principle of the conservation of energy to the mixer and
to the fluids contained in it. With the adiabatic capacity in respect
to the outside taken into consideration

- 2 -
m(a) - A) +m(AT - A = (mew) e -m w e (5)

which, with (4) allowed for, gives

2 12 2
W W w
._]:— -m? ___l 1 _2 =
m—5—+m' —5— - (m + m') 5— = 4C; (6)

The term -AC; (AC; = total energy of internal effects of friction
and of viscosity) being essentially positive like each of the terms of
the first member of (6), it is apparent that this term is, at best,
egual to the initial total energy of the fluid masses discharged through
the mixer.
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Hence
2 2 12 .
w1 w1
= °q = . 1
AC; = k|m 5 +m' —5— . (7)

the factor k (which depends on the operational conditions and
especially on m, m', wi, and w1') being positive and equal to unity
at the most.

The convention (7) is used to write the equation of motion in the
form

(@ + m' w2 = (1 - k)Eml? + m'wl'j (8)

This form should be equivalent to equation (3) obtained by
utilizing the momentum theorem and this is utilized to link the factor
j of equation (3) with the factor k defined by (7).

Therefore

mm'(wl = Wl')2

1 -3 =\[(L-%)1+ (9)

(mwy + m'wl')2

This relation shows that J 1is related to k by a rather complex
expression and indicates the effect of the Carnot-Clausius principle on
the value of jJ.

According to this principle, k ranges between zerc and unity and
cancels out only in the specific case where the actuating and the
entrained fluids are identical and enter the mixer at the same speed
and in the same state. In this event, wq' =w; and J 1s zero like k.

In the limiting case where k =1, J 1is also equal to unity.

Thus Jj and k introduced in the equation of motion in form of
(3) or (8) range between zero and unity and are simultaneously equal to
one another within these limits. Moreover, they are connected through
the equality (9).

This remark offers an occasion to emphasize that, for the assump-
tions of this theory to be really compatible as affirmed previously, it
is essential to admit the existence of a resultant of tangential
stresses other than zero in contact with the wall and the fluid.
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In the case of incompressible fluids, the equations of state are
reduced to ' S : '

constant = g1 . .. . -

- o goga ma o fo]

a' constant = oy’

while the equation of motion (3) is still applicable.

Quantity k can still be defined by (7), since ACy; always
represents the work of the internal actions of friction and viscosity
defined by the usual method of rational hydrodynamics.

Equation (9) is also still applicable. It expresses the equation
of motion (3) in a different form and is derived direct from the kinetic
energy equation.

Therefore J and k are still connected by equation (3).

In this case, it should be noted, equations (3), (8), and (9) are
independent of any assumption regarding the exchange of heat; the trans-
formation may be isothermal as well as adiabatic. An assumption of this
kind is necessary only for determining the temperature changes of the
fluids produced in the mixer, which may exert a certain influence on the
value of' the coefficient of wviscosity and so, on the energy A2ACji to
which the factor k, which figures in (8) and (9), corresponds.

It will be recalled that, in his theory of thrust augmenters in
incompressible fluids, Rateau confined himself to studying the form (3)
of the equation of motion by giving a priori, to (1 - j) a certain value
below unity and considered (m, m', wi, w1') as nearly independent of the
conditions of functioning of the mixer, at least within a certain range
of these variables.

5. Energy losses in the mixer.
The mixer and the fluids contained in it being considered as a

system in monothermal transformation (in contact with the atmosphere
at temperature © ), the energy loss IIy in the mixer in unit time is

1T, =0[m(S, - 8)) + m'(8y" - 8 1)]
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according to the Carnot-Clausius principle, and with the adiabatic
process of the system with respect to the outside being: allowed for,
it can be written as :

To ® To ®
IIm=mf dA(—,l—,—l)+m‘f dA'(T—l+
| T Ty '

1 1

n(A, - A) +m' (A - )

or by (5) as
rTo c) To e -
II, = m\j dA'T -1) +m' dA'’ T - 1] +
Ty T
2 2 12 2
w12 - W W - W
m oty 2T (10)

The significance of the different terms in this expression is
readily apparent. In the mixer the actuating fluid transfers heat
irreversibly and at constant pressure to the entrained fluid. It is
cooled between T7; and Tp, while the latter is heated between Ty’
and To and this transfer and the heat absorption induce, with respect
to the source @, a loss which can be avoided by introducing Carnot
cycles between the fluids and the source ©, which afford the realiza-
tion of effective energy, the algebraic value of which is represented
by the first two terms of (10) and the sum of which is always positive.

Furthermore, the entrained fluid receives, according to (5) and (6)
and the essentially negative sign of ACj, more heat than it transfers
to the driving fluid, the difference representing the decrease in total
kinetic energy, which constitutes the second part, likewise always
positive, of the energy loss represented by the two last terms of (10).

6. Equations of functioning of the complete thrust augmenter.
It is expedient to add to equations (1), (2), (7), and (8) (or in
place of (8), (3) and (9)) established for the mixer, the equations of

functioning of the inlet nozzles and of the diffuser.

The equations of the usual nozzles theory are taken in their over-
all form corresponding to the whole of each nozzle.
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Subscripts 1 and f refer to the extreme sections of the-com-
plete thrust augmenter; the quantities of the entrained fluilds are
distinguished by accents.

The inlet nozzles operate between p; (or pi') and p1, the
diffuser between P and pe.

For simplification, it is assumed that the expansions and compres-
sions of the fluid in the adiabatic nozzles are achleved by a polytropic
law of the form

po? = cte

the coefficient n ranging between 1 and 7y = C/c for expansion,
higher than 7y for compression.

Theoretically, n varies in a certain way with p depending upon
nozzle and fluid, but to simplify matters it is assumed that for a
nozzle with respect to total expansion or compression, n can be given
a constant value when the ratio of the extreme pressures is modified a
little.

In these conditions, the equations of functioning for each nozzle,
between the extreme sections with subscripts gq and r, assume the form

2 2 _ i h
V.2 - Vq = 2(Aq - Ap) (motion)
/
m = GE!) = !QX\ (continuity) (11)
0/q \O » ’
quqn = Prcrn (supplementary relation
/

and these relations can be utilized separately for the two inlet
nozzles and for the diffuser.

The problem of the thrust augmenter is put as follows:
Given:
the volume m and m'

the initial state of the fluids: p;, T; (and oy) py', Ty'
(and o3')

the initial speeds: wi, wi'




200 : , NACA TM 1259

Find, when py 1is known, the final state Ty (and or, or') of the
expelled mixture, its speed wr as well as the characteristic sections
of the mixer.

It is easily seen that the problem, as put, contains only one
arbitrary quantity, namely, the pressure p; in the mixer, if suitable
values can be given to n (exponent of the polytropic laws) and J
or k (effects of viscosity and friction in the mixer).

In the following the equations of the gas augmenters are repeated
with p and T expressed as variables of the state of the fluid, the
specific volume o being related to these variables by the equation
of state po = RT of perfect gases.

The equations defining the states and velocities are

é n-1

b\ n
w2 - w2 = 207y |1 - (;)
1

n'-1
P n'
wlle - wl|2 — EC'Tl' l - (P_]:,_'_>
i
Inlet
nozzlesg n-1
(I)a iy <P1> n
Ty \Py
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O
Pl) nd-l
Dr.

2 2 _

Diffuser
(I)a
. | ng

_T_f ) (&) nd-l

T2 \p2

\

In these equations ng 1is the polytropic exponent with respect

to the transformation experienced by the homogenecus mixture circulating
in the diffuser for which

c. . mC+mC oy +m'y!
d” m+m' 7d m+ m'

and

< -
1< N3 < 74 at expansion

73 < B4 at compression in the diffuser

The equations defining the specific volumes in the extreme sections
of the different parts of the thrust augmenter are

P10y = RTy
(I1)a
pjoy’ = R,
P10, = RT,
(IT)m
1 — 1
pyoy' = R'T,
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Lastly, the equations defining the partial sections w or the
total sections -  are

(o en™ o om ™
17 7 oy e oq
1 1
(IIT)a (w;' = m’ zi— ''=m' zi—
1 Ui' (Dl 0—11
— 1
KQl e T |
e
[4)) =m—w2- [0\ = wi
2 ap f ap
W, W
a)gl =m' _2 mfl =m' ,L[
(III)d< % 9
= 1
02 = ab + @b
= \
flg = @p + O

It is readily seen from these 24 equations containing 23 different
quantities (R, R', Ry, n, n', ng, 7, 7', 73, and k being assumed
known) that all the unknowns can be determined when the nine quantities
m, m', py, Pi'y Ty, Ty', Wy, W3', and py are given, and the pres-

sure py Iin the mixer is regarded as an arbitrary quantity as function
of which the unknowns are expressed.

7. Energy efficiency of the thrust augmenter.

The energy efficiency of the augmenter, strictly speaking, is
defined by the ratio of effective energy of the mixture delivered at
the outlet to the effective energy of the introduced fluids. The
difference between these two terms represents the energy loss
(IIa + IT, + IId) produced in the three parts of the thrust augmenter

in unit time.
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Considering only compressible fluids, their useful energy must be
defined, in & certain state and per unit mass, by the difference of the
values of the function '

U -88 + po + %? =A - 08 + %; (12)

in the particular state and in a reference state for which, by defini-
tion, the effective energy is regarded as zero.

For an sugmenter operating in the atmosphere, a fluid must be
considered as being devoid of useful energy when it is at temperature ©
and atmospheric pressure p, without speed (w = 0).

" Therefore

Mp-0) ~®(pae) T °

a relation which links the arbitrafy constants in the general expres-
sion of the total heat A and of the entropy S.

The effective energy I' is then
s )

T T P
1‘=f aA - f@f e
T P 2
e 3] ra "

T
1"=f (1 -'%))dA+@R10g_P_+32_
pa 2

© J

The energy efficiency of the complete thrust augmenter is

y (13)

mle + m' e’ IT, + I, + II4
Pen = mry + m'ry’ - mly + m'Iy’ )

and the energy losses corresponding to the three sections (all three
adiabatic) are

II& = @E(Sl = Si) + m'(Sl' = Si’]
1L, Sl'zl (15)

IL; = ofn(sy - 5,) + m' (s, sg'ﬂ

1l
@®

_11—1(82 = Sl) aqp m'(SQ'
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The values of the temperature, pressure, and entropy can be
obtained by solving the equations (I) and (IIL) of the preceding arti-
cle 6. This, in turn, is used to determine the efficiency and the
energy losses in the thrust augmenter by the formulas (13), (14), and
(15) in each particular case.

8. Special study of jet and gas thrust augmenters.

Only the states, speeds, efficiency, and losses of the system are
considered.

The Jjet and gas thrust augmenter is a nozzle in which a volume mn
of actuating gas, starting without speed at a state (p., T.) corre-
sponding, in gemeral, to the end of a combustion, is utilized to induce
the entrainment of a tertain volume of air m', taken from the atmos-
phere in the conditi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>